Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell.

Ko M, Pham LTM, Sa YJ, Woo J, Nguyen TVT, Kim JH, Oh D, Sharma P, Ryu J, Shin TJ, Joo SH, Kim YH, Jang JW.

Nat Commun. 2019 Nov 12;10(1):5123. doi: 10.1038/s41467-019-13022-7.

2.

Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

Husarcíková J, Voß H, Domínguez de María P, Schallmey A.

Appl Microbiol Biotechnol. 2018 Jul;102(13):5391-5401. doi: 10.1007/s00253-018-9040-3. Epub 2018 May 4. Review.

PMID:
29728724
3.

Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.

Gosselink RJ, Teunissen W, van Dam JE, de Jong E, Gellerstedt G, Scott EL, Sanders JP.

Bioresour Technol. 2012 Feb;106:173-7. doi: 10.1016/j.biortech.2011.11.121. Epub 2011 Dec 4.

PMID:
22197338
4.

Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides.

Zhou L, Santomauro F, Fan J, Macquarrie D, Clark J, Chuck CJ, Budarin V.

Faraday Discuss. 2017 Sep 21;202:351-370. doi: 10.1039/c7fd00102a.

PMID:
28665433
5.

Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading.

Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF.

Chem Soc Rev. 2018 Feb 5;47(3):852-908. doi: 10.1039/c7cs00566k. Review.

PMID:
29318245
6.

Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis.

Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM.

Angew Chem Int Ed Engl. 2016 Jul 11;55(29):8164-215. doi: 10.1002/anie.201510351. Epub 2016 Jun 17. Review.

7.

Valorization of lignin in polymer and composite systems for advanced engineering applications - A review.

Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, Culebras M, Teacă CA.

Int J Biol Macromol. 2019 Jun 15;131:828-849. doi: 10.1016/j.ijbiomac.2019.03.069. Epub 2019 Mar 11. Review.

PMID:
30872049
8.

Kraft lignin biorefinery: A perspective.

Hu J, Zhang Q, Lee DJ.

Bioresour Technol. 2018 Jan;247:1181-1183. doi: 10.1016/j.biortech.2017.08.169. Epub 2017 Sep 1.

PMID:
28899675
9.

Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

Ma R, Xu Y, Zhang X.

ChemSusChem. 2015 Jan;8(1):24-51. doi: 10.1002/cssc.201402503. Epub 2014 Oct 1. Review.

PMID:
25272962
10.

Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri.

Pham le TM, Kim YH.

Enzyme Microb Technol. 2014 Nov;66:74-9. doi: 10.1016/j.enzmictec.2014.08.011. Epub 2014 Sep 3.

PMID:
25248703
11.

Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass.

Li M, Pu Y, Yoo CG, Gjersing E, Decker SR, Doeppke C, Shollenberger T, Tschaplinski TJ, Engle NL, Sykes RW, Davis MF, Baxter HL, Mazarei M, Fu C, Dixon RA, Wang ZY, Neal Stewart C Jr, Ragauskas AJ.

Biotechnol Biofuels. 2017 Jan 3;10:12. doi: 10.1186/s13068-016-0695-7. eCollection 2017.

12.

Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization.

Kärkäs MD.

ChemSusChem. 2017 May 22;10(10):2111-2115. doi: 10.1002/cssc.201700436. Epub 2017 May 5.

13.

An "ideal lignin" facilitates full biomass utilization.

Li Y, Shuai L, Kim H, Motagamwala AH, Mobley JK, Yue F, Tobimatsu Y, Havkin-Frenkel D, Chen F, Dixon RA, Luterbacher JS, Dumesic JA, Ralph J.

Sci Adv. 2018 Sep 28;4(9):eaau2968. doi: 10.1126/sciadv.aau2968. eCollection 2018 Sep.

14.

Laccases for biorefinery applications: a critical review on challenges and perspectives.

Roth S, Spiess AC.

Bioprocess Biosyst Eng. 2015 Dec;38(12):2285-313. doi: 10.1007/s00449-015-1475-7. Epub 2015 Oct 5. Review.

PMID:
26437966
15.

Effective Release of Lignin Fragments from Lignocellulose by Lewis Acid Metal Triflates in the Lignin-First Approach.

Huang X, Zhu J, Korányi TI, Boot MD, Hensen EJ.

ChemSusChem. 2016 Dec 8;9(23):3262-3267. doi: 10.1002/cssc.201601252. Epub 2016 Oct 21.

PMID:
27767255
16.

Using a low melting solvent mixture to extract value from wood biomass.

Hiltunen J, Kuutti L, Rovio S, Puhakka E, Virtanen T, Ohra-Aho T, Vuoti S.

Sci Rep. 2016 Sep 7;6:32420. doi: 10.1038/srep32420.

17.

Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates.

Foster CE, Martin TM, Pauly M.

J Vis Exp. 2010 Mar 12;(37). pii: 1837. doi: 10.3791/1837.

18.

Integrated process for the coproduction of fermentable sugars and lignin adsorbents from hardwood.

Chu Q, Song K, Hu J, Bu Q, Zhang X, Chen X.

Bioresour Technol. 2019 Oct;289:121659. doi: 10.1016/j.biortech.2019.121659. Epub 2019 Jun 18.

PMID:
31234075
19.

In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin.

Pham LTM, Seo H, Kim KJ, Kim YH.

Biotechnol Biofuels. 2018 Dec 10;11:325. doi: 10.1186/s13068-018-1324-4. eCollection 2018.

20.

Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin.

Ruan X, Liu Y, Wang G, Frost RL, Qian G, Tsang DCW.

Bioresour Technol. 2018 Dec;270:223-229. doi: 10.1016/j.biortech.2018.09.027. Epub 2018 Sep 6.

PMID:
30219573

Supplemental Content

Support Center