Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Development of an on-line Raman spectral analytical method for monitoring and endpoint determination of the Cornu Caprae Hircus hydrolysis process.

Yan X, Li W, Zhang X, Liu S, Qu H.

J Pharm Pharmacol. 2019 Nov 11. doi: 10.1111/jphp.13186. [Epub ahead of print]

PMID:
31713245
2.

Combining convolutional neural networks and on-line Raman spectroscopy for monitoring the Cornu Caprae Hircus hydrolysis process.

Yan X, Zhang S, Fu H, Qu H.

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Oct 12;226:117589. doi: 10.1016/j.saa.2019.117589. [Epub ahead of print]

PMID:
31634714
3.

Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments.

Kim B, Woo YA.

J Pharm Biomed Anal. 2018 May 30;154:278-284. doi: 10.1016/j.jpba.2018.03.001. Epub 2018 Mar 9.

PMID:
29567570
4.

[Comparison on proteins of Saigae Tataricae Cornu and Caprae Hircus Cornu].

Liu R, Zhu ZH, Wu J, Qian DW, Duan JA.

Zhongguo Zhong Yao Za Zhi. 2018 Aug;43(16):3329-3334. doi: 10.19540/j.cnki.cjcmm.20180511.001. Chinese.

PMID:
30200737
5.

Development and in-line validation of a Process Analytical Technology to facilitate the scale up of coating processes.

Wirges M, Funke A, Serno P, Knop K, Kleinebudde P.

J Pharm Biomed Anal. 2013 May 5;78-79:57-64. doi: 10.1016/j.jpba.2013.01.037. Epub 2013 Feb 10.

PMID:
23454678
6.

[Establishment of near-infrared on-line monitoring model and determination of endpoint in frying process of Hordei Fructus Germinatus].

Yang HS, Wu WG, Tan LX, Wen LZ, Wang XL, Jiang T, Wu L.

Zhongguo Zhong Yao Za Zhi. 2017 Feb;42(3):478-485. doi: 10.19540/j.cnki.cjcmm.20170103.013. Chinese.

PMID:
28952252
7.

Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool.

Santos RM, Kessler JM, Salou P, Menezes JC, Peinado A.

Biotechnol Prog. 2018 May;34(3):659-670. doi: 10.1002/btpr.2635. Epub 2018 Apr 17.

PMID:
29603907
8.

Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification.

Wolahan SM, Hirt D, Glenn TC.

In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. Chapter 25.

9.

In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.

Wan B, Zordan CA, Lu X, McGeorge G.

AAPS PharmSciTech. 2016 Oct;17(5):1173-81. doi: 10.1208/s12249-015-0456-0. Epub 2015 Nov 24.

PMID:
26604007
10.

NIR spectroscopy as a process analytical technology (PAT) tool for monitoring and understanding of a hydrolysis process.

Wu Z, Peng Y, Chen W, Xu B, Ma Q, Shi X, Qiao Y.

Bioresour Technol. 2013 Jun;137:394-9. doi: 10.1016/j.biortech.2013.03.008. Epub 2013 Mar 28.

PMID:
23611702
11.

Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process.

De Beer TR, Bodson C, Dejaegher B, Walczak B, Vercruysse P, Burggraeve A, Lemos A, Delattre L, Heyden YV, Remon JP, Vervaet C, Baeyens WR.

J Pharm Biomed Anal. 2008 Nov 4;48(3):772-9. doi: 10.1016/j.jpba.2008.07.023. Epub 2008 Aug 7.

PMID:
18799281
12.

End point determination of blending process for trimebutine tablets using principle component analysis (PCA) and partial least squares (PLS) regression.

Lee SH, Lee JH, Cho S, Do SH, Woo YA.

Arch Pharm Res. 2012 Sep;35(9):1599-607. doi: 10.1007/s12272-012-0911-3. Epub 2012 Oct 9.

PMID:
23054717
13.

Near-infrared Spectroscopy as a Process Analytical Technology Tool for Monitoring the Parching Process of Traditional Chinese Medicine Based on Two Kinds of Chemical Indicators.

Li K, Wang W, Liu Y, Jiang S, Huang G, Ye L.

Pharmacogn Mag. 2017 Apr-Jun;13(50):332-337. doi: 10.4103/pm.pm_416_16. Epub 2017 Apr 18.

14.

Comparison of the peptidome released from keratins in Saiga antelope horn and goat horn under simulated gastrointestinal digestion.

Liu R, Zhu Z, Qian D, Duan JA.

Electrophoresis. 2019 Oct;40(20):2759-2766. doi: 10.1002/elps.201900078. Epub 2019 Jun 13.

PMID:
31162671
16.

Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion.

Saerens L, Segher N, Vervaet C, Remon JP, De Beer T.

Anal Chim Acta. 2014 Jan 2;806:180-7. doi: 10.1016/j.aca.2013.11.020. Epub 2013 Nov 19.

PMID:
24331054
17.

On-line near infrared spectroscopy as a Process Analytical Technology (PAT) tool to control an industrial seeded API crystallization.

Schaefer C, Lecomte C, Clicq D, Merschaert A, Norrant E, Fotiadu F.

J Pharm Biomed Anal. 2013 Sep;83:194-201. doi: 10.1016/j.jpba.2013.05.015. Epub 2013 May 20.

PMID:
23764657
18.

[Determination of free thiols in animal horn derived traditional Chinese medicines].

Wang CX, Liu R, Qian DW, Duan JA.

Zhongguo Zhong Yao Za Zhi. 2019 Mar;44(6):1216-1219. doi: 10.19540/j.cnki.cjcmm.20181226.015. Chinese.

PMID:
30989986
19.

Calibration transfer of a Raman spectroscopic quantification method from at-line to in-line assessment of liquid detergent compositions.

Brouckaert D, Uyttersprot JS, Broeckx W, De Beer T.

Anal Chim Acta. 2017 Jun 8;971:14-25. doi: 10.1016/j.aca.2017.03.049. Epub 2017 Apr 10.

PMID:
28456279
20.

Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction.

Chieng N, Rehder S, Saville D, Rades T, Aaltonen J.

J Pharm Biomed Anal. 2009 Jan 15;49(1):18-25. doi: 10.1016/j.jpba.2008.09.054. Epub 2008 Oct 17.

PMID:
19081220

Supplemental Content

Support Center