Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Promoting cellulase and hemicellulase production from Trichoderma orientalis EU7-22 by overexpression of transcription factors Xyr1 and Ace3.

Xue Y, Han J, Li Y, Liu J, Gan L, Long M.

Bioresour Technol. 2020 Jan;296:122355. doi: 10.1016/j.biortech.2019.122355. Epub 2019 Nov 1.

PMID:
31711906
2.

Enhancing Cellulase and Hemicellulase Production in Trichoderma orientalis EU7-22 via Knockout of the creA.

Long C, Cheng Y, Cui J, Liu J, Gan L, Zeng B, Long M.

Mol Biotechnol. 2018 Jan;60(1):55-61. doi: 10.1007/s12033-017-0046-3.

PMID:
29214500
3.

The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei.

Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D.

J Biol Chem. 2019 Nov 29;294(48):18435-18450. doi: 10.1074/jbc.RA119.008497. Epub 2019 Sep 9.

PMID:
31501242
4.

Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose.

Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z.

Biotechnol Biofuels. 2017 Oct 4;10:228. doi: 10.1186/s13068-017-0915-9. eCollection 2017.

5.

Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator.

Zhang X, Li Y, Zhao X, Bai F.

Bioresour Technol. 2017 Jan;223:317-322. doi: 10.1016/j.biortech.2016.10.083. Epub 2016 Oct 31.

PMID:
27818160
6.

Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.

Zhang J, Zhang G, Wang W, Wang W, Wei D.

Microb Cell Fact. 2018 May 17;17(1):75. doi: 10.1186/s12934-018-0926-7.

7.

Improvement in xylooligosaccharides production by knockout of the β-xyl1 gene in Trichoderma orientalis EU7-22.

Long C, Cui J, Li H, Liu J, Gan L, Zeng B, Long M.

3 Biotech. 2018 Jan;8(1):26. doi: 10.1007/s13205-017-1041-x. Epub 2017 Dec 20.

8.

Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1.

Zhang F, Zhao X, Bai F.

Bioresour Technol. 2018 Jan;247:676-683. doi: 10.1016/j.biortech.2017.09.126. Epub 2017 Sep 20.

PMID:
30060399
9.

Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production.

Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM.

Biotechnol Biofuels. 2014 Jan 28;7(1):14. doi: 10.1186/1754-6834-7-14.

10.

Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation.

Xin F, Geng A.

Appl Biochem Biotechnol. 2010 Sep;162(1):295-306. doi: 10.1007/s12010-009-8745-2. Epub 2009 Aug 26.

PMID:
19707729
11.

The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

da Silva Delabona P, Rodrigues GN, Zubieta MP, Ramoni J, Codima CA, Lima DJ, Farinas CS, da Cruz Pradella JG, Seiboth B.

J Biotechnol. 2017 Mar 20;246:24-32. doi: 10.1016/j.jbiotec.2017.02.002. Epub 2017 Feb 10.

PMID:
28192217
12.

The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30.

Limón MC, Pakula T, Saloheimo M, Penttilä M.

Microb Cell Fact. 2011 May 24;10:40. doi: 10.1186/1475-2859-10-40.

13.

Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype.

Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP.

BMC Genomics. 2015 Apr 20;16:326. doi: 10.1186/s12864-015-1526-0. Erratum in: BMC Genomics. 2015;16(1):725.

14.

[Artificial zinc finger protein mediated cellulase production in Trichoderma reesei Rut-C30].

Meng Q, Li J, Zhang F, Zhao X, Bai F.

Sheng Wu Gong Cheng Xue Bao. 2019 Jan 25;35(1):81-90. doi: 10.13345/j.cjb.180132. Chinese.

15.

Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei.

Derntl C, Mach RL, Mach-Aigner AR.

Biotechnol Biofuels. 2019 Sep 30;12:231. doi: 10.1186/s13068-019-1575-8. eCollection 2019.

16.

The impact of chromatin remodelling on cellulase expression in Trichoderma reesei.

Mello-de-Sousa TM, Rassinger A, Pucher ME, dos Santos Castro L, Persinoti GF, Silva-Rocha R, Poças-Fonseca MJ, Mach RL, Nascimento Silva R, Mach-Aigner AR.

BMC Genomics. 2015 Aug 7;16:588. doi: 10.1186/s12864-015-1807-7.

17.

Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering.

Zou G, Shi S, Jiang Y, van den Brink J, de Vries RP, Chen L, Zhang J, Ma L, Wang C, Zhou Z.

Microb Cell Fact. 2012 Feb 8;11:21. doi: 10.1186/1475-2859-11-21.

18.

A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei.

Wang L, Lv X, Cao Y, Zheng F, Meng X, Shen Y, Chen G, Liu W, Zhang W.

Appl Microbiol Biotechnol. 2019 Jun;103(11):4511-4523. doi: 10.1007/s00253-019-09739-6. Epub 2019 Apr 13.

PMID:
30982107
19.

Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase.

Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP.

Eukaryot Cell. 2011 Feb;10(2):262-71. doi: 10.1128/EC.00208-10. Epub 2010 Dec 17.

20.

Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production.

Xia C, Li Z, Xu Y, Yang P, Gao L, Yan Q, Li S, Wang Y, Qu Y, Song X.

Appl Microbiol Biotechnol. 2019 Mar;103(6):2675-2687. doi: 10.1007/s00253-018-09612-y. Epub 2019 Feb 5.

PMID:
30719550

Supplemental Content

Support Center