Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Active Appearance Model Induced Generative Adversarial Network for Controlled Data Augmentation.

Liu J, Shen C, Liu T, Aguilera N, Tam J.

Med Image Comput Comput Assist Interv. 2019 Oct;11764:201-208. doi: 10.1007/978-3-030-32239-7_23. Epub 2019 Oct 10.

2.

Breast cancer detection using synthetic mammograms from generative adversarial networks in convolutional neural networks.

Guan S, Loew M.

J Med Imaging (Bellingham). 2019 Jul;6(3):031411. doi: 10.1117/1.JMI.6.3.031411. Epub 2019 Mar 23.

PMID:
30915386
3.

Generative Adversarial Network for Medical Images (MI-GAN).

Iqbal T, Ali H.

J Med Syst. 2018 Oct 12;42(11):231. doi: 10.1007/s10916-018-1072-9.

PMID:
30315368
4.

Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images.

Van Eycke YR, Foucart A, Decaestecker C.

Front Med (Lausanne). 2019 Oct 15;6:222. doi: 10.3389/fmed.2019.00222. eCollection 2019. Review.

5.

Deep learning based adaptive sequential data augmentation technique for the optical network traffic synthesis.

Li J, Wang D, Li S, Zhang M, Song C, Chen X.

Opt Express. 2019 Jun 24;27(13):18831-18847. doi: 10.1364/OE.27.018831.

PMID:
31252819
6.

Assessment of Data Augmentation Strategies Toward Performance Improvement of Abnormality Classification in Chest Radiographs.

Ganesan P, Rajaraman S, Long R, Ghoraani B, Antani S.

Conf Proc IEEE Eng Med Biol Soc. 2019 Jul;2019:841-844. doi: 10.1109/EMBC.2019.8857516.

PMID:
31946026
7.

Image generation by GAN and style transfer for agar plate image segmentation.

Andreini P, Bonechi S, Bianchini M, Mecocci A, Scarselli F.

Comput Methods Programs Biomed. 2019 Dec 17;184:105268. doi: 10.1016/j.cmpb.2019.105268. [Epub ahead of print]

PMID:
31891902
8.

Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.

Jiang J, Hu YC, Tyagi N, Zhang P, Rimner A, Deasy JO, Veeraraghavan H.

Med Phys. 2019 Oct;46(10):4392-4404. doi: 10.1002/mp.13695. Epub 2019 Aug 20.

PMID:
31274206
9.

StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.

Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas DN.

IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.

PMID:
30010548
10.

AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.

Rahnemoonfar M, Johnson J, Paden J.

Sensors (Basel). 2019 Dec 12;19(24). pii: E5479. doi: 10.3390/s19245479.

11.

Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.

He C, Xiong D, Zhang Q, Liao M.

Sensors (Basel). 2019 Feb 19;19(4). pii: E871. doi: 10.3390/s19040871.

12.

An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection.

Sun L, Wang J, Huang Y, Ding X, Greenspan H, Paisley J.

IEEE J Biomed Health Inform. 2020 Jan 6. doi: 10.1109/JBHI.2020.2964016. [Epub ahead of print]

PMID:
31905155
13.

A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks.

Gao H, Yao D, Wang M, Li C, Liu H, Hua Z, Wang J.

Sensors (Basel). 2019 Jul 25;19(15). pii: E3269. doi: 10.3390/s19153269.

14.

Generative adversarial network in medical imaging: A review.

Yi X, Walia E, Babyn P.

Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.

PMID:
31521965
15.

Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis.

Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P.

IEEE Trans Med Imaging. 2019 Jul;38(7):1750-1762. doi: 10.1109/TMI.2019.2895894. Epub 2019 Jan 29.

PMID:
30714911
16.

Skin Lesion Classification Using GAN based Data Augmentation.

Rashid H, Tanveer MA, Aqeel Khan H.

Conf Proc IEEE Eng Med Biol Soc. 2019 Jul;2019:916-919. doi: 10.1109/EMBC.2019.8857905.

PMID:
31946043
17.

Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.

Sandfort V, Yan K, Pickhardt PJ, Summers RM.

Sci Rep. 2019 Nov 15;9(1):16884. doi: 10.1038/s41598-019-52737-x.

18.

Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images.

Kazuhiro K, Werner RA, Toriumi F, Javadi MS, Pomper MG, Solnes LB, Verde F, Higuchi T, Rowe SP.

Tomography. 2018 Dec;4(4):159-163. doi: 10.18383/j.tom.2018.00042.

19.

[Applications of generative adversarial networks in medical image processing].

Pan D, Jia L, Zeng A, Song X.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Dec 25;35(6):970-976. doi: 10.7507/1001-5515.201803025. Review. Chinese.

PMID:
30583325
20.

Exploiting Images for Video Recognition: Heterogeneous Feature Augmentation via Symmetric Adversarial Learning.

Yu F, Wu X, Chen J, Duan L.

IEEE Trans Image Process. 2019 Nov;28(11):5308-5321. doi: 10.1109/TIP.2019.2917867. Epub 2019 May 24.

PMID:
31144637

Supplemental Content

Support Center