Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity.

Battaglia RA, Beltran AS, Delic S, Dumitru R, Robinson JA, Kabiraj P, Herring LE, Madden VJ, Ravinder N, Willems E, Newman RA, Quinlan RA, Goldman JE, Perng MD, Inagaki M, Snider NT.

Elife. 2019 Nov 4;8. pii: e47789. doi: 10.7554/eLife.47789.

2.

GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease.

Li L, Tian E, Chen X, Chao J, Klein J, Qu Q, Sun G, Sun G, Huang Y, Warden CD, Ye P, Feng L, Li X, Cui Q, Sultan A, Douvaras P, Fossati V, Sanjana NE, Riggs AD, Shi Y.

Cell Stem Cell. 2018 Aug 2;23(2):239-251.e6. doi: 10.1016/j.stem.2018.07.009.

3.

Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes.

Jones JR, Kong L, Hanna MG 4th, Hoffman B, Krencik R, Bradley R, Hagemann T, Choi J, Doers M, Dubovis M, Sherafat MA, Bhattacharyya A, Kendziorski C, Audhya A, Messing A, Zhang SC.

Cell Rep. 2018 Oct 23;25(4):947-958.e4. doi: 10.1016/j.celrep.2018.09.083.

4.

Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.

Pekny T, Faiz M, Wilhelmsson U, Curtis MA, Matej R, Skalli O, Pekny M.

APMIS. 2014 Jan;122(1):76-80. doi: 10.1111/apm.12088. Epub 2013 Apr 18.

PMID:
23594359
5.

Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model.

Lee SH, Nam TS, Kim KH, Kim JH, Yoon W, Heo SH, Kim MJ, Shin BA, Perng MD, Choy HE, Jo J, Kim MK, Choi SY.

BMC Neurol. 2017 Sep 7;17(1):175. doi: 10.1186/s12883-017-0938-7.

6.

Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.

Tian R, Gregor M, Wiche G, Goldman JE.

Am J Pathol. 2006 Mar;168(3):888-97.

7.

Astrocytic TDP-43 pathology in Alexander disease.

Walker AK, Daniels CM, Goldman JE, Trojanowski JQ, Lee VM, Messing A.

J Neurosci. 2014 May 7;34(19):6448-58. doi: 10.1523/JNEUROSCI.0248-14.2014.

9.

Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation.

Chen MH, Hagemann TL, Quinlan RA, Messing A, Perng MD.

ASN Neuro. 2013 Nov 19;5(5):e00125. doi: 10.1042/AN20130032.

10.

The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.

Sosunov AA, McKhann GM 2nd, Goldman JE.

Acta Neuropathol Commun. 2017 Mar 31;5(1):27. doi: 10.1186/s40478-017-0425-9.

11.

Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukoencephalopathy patients.

Ferreira MC, Dorboz I, Rodriguez D, Boespflug Tanguy O.

Eur J Med Genet. 2015 Sep;58(9):466-70. doi: 10.1016/j.ejmg.2015.07.002. Epub 2015 Jul 21.

PMID:
26208460
12.

Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.

Hagemann TL, Boelens WC, Wawrousek EF, Messing A.

Hum Mol Genet. 2009 Apr 1;18(7):1190-9. doi: 10.1093/hmg/ddp013. Epub 2009 Jan 7.

13.

Aberrant astrocyte Ca2+ signals "AxCa signals" exacerbate pathological alterations in an Alexander disease model.

Saito K, Shigetomi E, Yasuda R, Sato R, Nakano M, Tashiro K, Tanaka KF, Ikenaka K, Mikoshiba K, Mizuta I, Yoshida T, Nakagawa M, Mizuno T, Koizumi S.

Glia. 2018 May;66(5):1053-1067. doi: 10.1002/glia.23300. Epub 2018 Jan 31.

PMID:
29383757
14.

Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation.

Yoshida T, Nakagawa M.

Neuropathology. 2012 Aug;32(4):440-6. doi: 10.1111/j.1440-1789.2011.01268.x. Epub 2011 Nov 28. Review.

PMID:
22118268
15.
16.

Relative stabilities of wild-type and mutant glial fibrillary acidic protein in patients with Alexander disease.

Heaven MR, Wilson L, Barnes S, Brenner M.

J Biol Chem. 2019 Oct 25;294(43):15604-15612. doi: 10.1074/jbc.RA119.009777. Epub 2019 Sep 4.

PMID:
31484723
17.

Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differentiation into Mature Oligodendrocytes.

Gómez-Pinedo U, Sirerol-Piquer MS, Durán-Moreno M, García-Verdugo JM, Matias-Guiu J.

Front Neurol. 2017 Jun 6;8:255. doi: 10.3389/fneur.2017.00255. eCollection 2017.

18.

Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes.

Kondo T, Funayama M, Miyake M, Tsukita K, Era T, Osaka H, Ayaki T, Takahashi R, Inoue H.

Acta Neuropathol Commun. 2016 Jul 11;4(1):69. doi: 10.1186/s40478-016-0337-0. Erratum in: Acta Neuropathol Commun. 2016;4(1):101.

19.

A case of severe Alexander disease with de novo c. 239 T > C, p.(F80S), in GFAP.

Matsumoto A, Tulyeu J, Furukawa R, Watanabe C, Monden Y, Nozaki Y, Mori M, Namekawa M, Jimbo EF, Aihara T, Yamagata T, Osaka H.

Brain Dev. 2018 Aug;40(7):587-591. doi: 10.1016/j.braindev.2018.03.002. Epub 2018 Mar 21.

PMID:
29573842
20.

Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.

Moody LR, Barrett-Wilt GA, Sussman MR, Messing A.

J Biol Chem. 2017 Apr 7;292(14):5814-5824. doi: 10.1074/jbc.M116.772020. Epub 2017 Feb 21.

Supplemental Content

Support Center