Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer.

Kim MJ, Chi BH, Yoo JJ, Ju YM, Whang YM, Chang IH.

PLoS One. 2019 Oct 22;14(10):e0223689. doi: 10.1371/journal.pone.0223689. eCollection 2019.

2.

[Non-small cell lung cancer 95D cells co-cultured with 3D-bioprinted scaffold to construct a lung cancer model in vitro].

Mou H, Wang J, Hu H, Xu W, Chen Q.

Zhonghua Zhong Liu Za Zhi. 2015 Oct;37(10):736-40. Chinese.

PMID:
26813591
3.

Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold.

Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, Häfner H, Gasser M, Waaga-Gasser AM, Walles H, Dandekar G.

Tissue Eng Part C Methods. 2016 Jul;22(7):621-35. doi: 10.1089/ten.TEC.2015.0557. Epub 2016 Jun 3.

4.

Bioengineered 3D Scaffolds in Cancer Research: Focus on Epithelial to Mesenchymal Transition and Drug Screening.

Xu X, Tang L.

Curr Pharm Des. 2017;23(11):1710-1720. doi: 10.2174/1381612822666161201151832. Review.

PMID:
27908265
5.

3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression.

Lewis PL, Green RM, Shah RN.

Acta Biomater. 2018 Mar 15;69:63-70. doi: 10.1016/j.actbio.2017.12.042. Epub 2018 Jan 6.

6.

Assessing Radiosensitivity of Bladder Cancer in vitro: A 2D vs. 3D Approach.

Bodgi L, Bahmad HF, Araji T, Al Choboq J, Bou-Gharios J, Cheaito K, Zeidan YH, Eid T, Geara F, Abou-Kheir W.

Front Oncol. 2019 Mar 19;9:153. doi: 10.3389/fonc.2019.00153. eCollection 2019.

7.

Effect of different Bacillus Calmette-Guerin substrains on growth inhibition of T24 bladder cancer cells and cytokines secretion by BCG activated peripheral blood mononuclear cells of PBMCs.

Janaszek-Seydlitz W, Prygiel M, Bucholc B, Wiatrzyk A, Czajka U, Górska P, Soliwoda U.

Adv Clin Exp Med. 2014 Nov-Dec;23(6):877-84. doi: 10.17219/acem/37330.

8.
9.

FGFR3 Down-Regulation is Involved in bacillus Calmette-Guérin Induced Bladder Tumor Growth Inhibition.

Langle YV, Belgorosky D, Prack McCormick B, Sahores A, Góngora A, Baldi A, Lanari C, Lamb C, Eiján AM.

J Urol. 2016 Jan;195(1):188-97. doi: 10.1016/j.juro.2015.06.093. Epub 2015 Jul 2.

PMID:
26144336
10.

Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer.

Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H.

Oncol Rep. 2015 Apr;33(4):1837-43. doi: 10.3892/or.2015.3767. Epub 2015 Jan 29.

PMID:
25634491
11.

Gelatin-Methacryloyl (GelMA) Formulated with Human Platelet Lysate Supports Mesenchymal Stem Cell Proliferation and Differentiation and Enhances the Hydrogel's Mechanical Properties.

Kirsch M, Birnstein L, Pepelanova I, Handke W, Rach J, Seltsam A, Scheper T, Lavrentieva A.

Bioengineering (Basel). 2019 Aug 28;6(3). pii: E76. doi: 10.3390/bioengineering6030076.

12.

Three-dimensional cryogel matrix for spheroid formation and anti-cancer drug screening.

Singh A, Tayalia P.

J Biomed Mater Res A. 2019 Oct 26. doi: 10.1002/jbm.a.36822. [Epub ahead of print]

PMID:
31654478
13.

Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes.

Uz M, Büyüköz M, Sharma AD, Sakaguchi DS, Altinkaya SA, Mallapragada SK.

Acta Biomater. 2017 Apr 15;53:293-306. doi: 10.1016/j.actbio.2017.02.018. Epub 2017 Feb 16.

PMID:
28213098
14.

Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework.

Pal M, Chen H, Lee BH, Lee JYH, Yip YS, Tan NS, Tan LP.

Sci Rep. 2019 Jun 20;9(1):8997. doi: 10.1038/s41598-019-45384-9.

15.

Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model.

Gagliano N, Celesti G, Tacchini L, Pluchino S, Sforza C, Rasile M, Valerio V, Laghi L, Conte V, Procacci P.

World J Gastroenterol. 2016 May 14;22(18):4466-83. doi: 10.3748/wjg.v22.i18.4466.

16.
17.

Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix.

Wang X, Dai X, Zhang X, Li X, Xu T, Lan Q.

Biochem Biophys Res Commun. 2018 Apr 15;498(4):1052-1057. doi: 10.1016/j.bbrc.2018.03.114. Epub 2018 Mar 17.

PMID:
29551682
18.

Multicellular Co-Culture in Three-Dimensional Gelatin Methacryloyl Hydrogels for Liver Tissue Engineering.

Cui J, Wang H, Shi Q, Sun T, Huang Q, Fukuda T.

Molecules. 2019 May 7;24(9). pii: E1762. doi: 10.3390/molecules24091762.

19.

Multiple comparisons of three different sources of biomaterials in the application of tumor tissue engineering in vitro and in vivo.

Li W, Hu X, Wang S, Xing Y, Wang H, Nie Y, Liu T, Song K.

Int J Biol Macromol. 2019 Jun 1;130:166-176. doi: 10.1016/j.ijbiomac.2019.02.136. Epub 2019 Feb 23.

PMID:
30807798
20.

Screening of Additive Manufactured Scaffolds Designs for Triple Negative Breast Cancer 3D Cell Culture and Stem-Like Expansion.

Polonio-Alcalá E, Rabionet M, Guerra AJ, Yeste M, Ciurana J, Puig T.

Int J Mol Sci. 2018 Oct 12;19(10). pii: E3148. doi: 10.3390/ijms19103148.

Supplemental Content

Support Center