Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Decomposition analysis on soybean productivity increase under elevated CO2 using 3D canopy model reveals synergestic effects of CO2 and light in photosynthesis.

Song Q, Srinivasan V, Long SP, Zhu XG.

Ann Bot. 2019 Oct 22. pii: mcz163. doi: 10.1093/aob/mcz163. [Epub ahead of print]

PMID:
31638642
2.

Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change.

Srinivasan V, Kumar P, Long SP.

Glob Chang Biol. 2017 Apr;23(4):1626-1635. doi: 10.1111/gcb.13526. Epub 2016 Nov 17.

3.

Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3.

Gray SB, Dermody O, DeLucia EH.

J Exp Bot. 2010 Oct;61(15):4413-22. doi: 10.1093/jxb/erq244. Epub 2010 Aug 8.

4.

Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2?. Analysis Of a wheat crop under free-air co2 enrichment

Osborne CP, Roche JL, Garcia RL, Kimball BA, Wall GW, Pinter PJ, Morte RL, Hendrey GR, Long SP.

Plant Physiol. 1998 Jul;117(3):1037-45.

5.

Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ].

Ruiz-Vera UM, Siebers MH, Drag DW, Ort DR, Bernacchi CJ.

Glob Chang Biol. 2015 Nov;21(11):4237-49. doi: 10.1111/gcb.13013. Epub 2015 Sep 23.

PMID:
26119211
6.

Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration.

Sanz-Sáez Á, Koester RP, Rosenthal DM, Montes CM, Ort DR, Ainsworth EA.

Glob Chang Biol. 2017 Sep;23(9):3908-3920. doi: 10.1111/gcb.13678. Epub 2017 Apr 5.

PMID:
28267246
7.

Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.

Hussain MZ, Vanloocke A, Siebers MH, Ruiz-Vera UM, Cody Markelz RJ, Leakey AD, Ort DR, Bernacchi CJ.

Glob Chang Biol. 2013 May;19(5):1572-84. doi: 10.1111/gcb.12155. Epub 2013 Mar 5.

PMID:
23505040
8.

Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan.

Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H.

J Plant Res. 2010 Jul;123(4):563-76. doi: 10.1007/s10265-009-0270-4. Epub 2009 Dec 18.

PMID:
20020173
9.

Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

Drake JE, Tjoelker MG, Aspinwall MJ, Reich PB, Barton CV, Medlyn BE, Duursma RA.

New Phytol. 2016 Aug;211(3):850-63. doi: 10.1111/nph.13978. Epub 2016 Apr 28.

10.

Do all leaf photosynthesis parameters of rice acclimate to elevated CO2 , elevated temperature, and their combination, in FACE environments?

Cai C, Li G, Yang H, Yang J, Liu H, Struik PC, Luo W, Yin X, Di L, Guo X, Jiang W, Si C, Pan G, Zhu J.

Glob Chang Biol. 2018 Apr;24(4):1685-1707. doi: 10.1111/gcb.13961. Epub 2017 Nov 27.

PMID:
29076597
11.

Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

Gitelson AA, Peng Y, Arkebauer TJ, Suyker AE.

J Plant Physiol. 2015 Apr 1;177:100-109. doi: 10.1016/j.jplph.2014.12.015. Epub 2015 Feb 4.

PMID:
25723474
12.

Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

Locke AM, Sack L, Bernacchi CJ, Ort DR.

Ann Bot. 2013 Sep;112(5):911-8. doi: 10.1093/aob/mct143. Epub 2013 Jul 16.

13.

Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient.

Oikawa S, Ainsworth EA.

Environ Pollut. 2016 Aug;215:347-355. doi: 10.1016/j.envpol.2016.05.005. Epub 2016 Jun 2.

PMID:
27261884
14.

Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus.

Sharwood RE, Crous KY, Whitney SM, Ellsworth DS, Ghannoum O.

J Exp Bot. 2017 Feb 1;68(5):1157-1167. doi: 10.1093/jxb/erw484.

15.

Modelling plant responses to elevated CO2: how important is leaf area index?

Ewert F.

Ann Bot. 2004 Jun;93(6):619-27. Epub 2004 Apr 21. Review.

16.

Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean.

Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M.

BMC Plant Biol. 2019 Jun 13;19(1):255. doi: 10.1186/s12870-019-1788-9.

17.

Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

Rosenthal DM, Ruiz-Vera UM, Siebers MH, Gray SB, Bernacchi CJ, Ort DR.

Plant Sci. 2014 Sep;226:136-46. doi: 10.1016/j.plantsci.2014.06.013. Epub 2014 Jun 20.

PMID:
25113459
18.

Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

Shimono H, Nakamura H, Hasegawa T, Okada M.

Glob Chang Biol. 2013 Aug;19(8):2444-53. doi: 10.1111/gcb.12214. Epub 2013 May 9.

PMID:
23564676
19.

Altered physiological function, not structure, drives increased radiation-use efficiency of soybean grown at elevated CO2.

Rascher U, Biskup B, Leakey AD, McGrath JM, Ainsworth EA.

Photosynth Res. 2010 Jul;105(1):15-25. doi: 10.1007/s11120-010-9548-6. Epub 2010 Apr 21.

PMID:
20407832
20.

Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction.

Burgess AJ, Retkute R, Herman T, Murchie EH.

Front Plant Sci. 2017 May 17;8:734. doi: 10.3389/fpls.2017.00734. eCollection 2017.

Supplemental Content

Support Center