Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Optical Pooled Screens in Human Cells.

Feldman D, Singh A, Schmid-Burgk JL, Carlson RJ, Mezger A, Garrity AJ, Zhang F, Blainey PC.

Cell. 2019 Oct 17;179(3):787-799.e17. doi: 10.1016/j.cell.2019.09.016.

PMID:
31626775
2.

Pooled CRISPR-Based Genetic Screens in Mammalian Cells.

Chan K, Tong AHY, Brown KR, Mero P, Moffat J.

J Vis Exp. 2019 Sep 4;(151). doi: 10.3791/59780.

PMID:
31545321
3.

Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.

Aregger M, Chandrashekhar M, Tong AHY, Chan K, Moffat J.

Methods Mol Biol. 2019;1869:169-188. doi: 10.1007/978-1-4939-8805-1_15.

PMID:
30324523
4.

Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.

Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A, Aregger M, Chandrashekhar M, Hustedt N, Seth S, Noonan A, Habsid A, Sizova O, Nedyalkova L, Climie R, Tworzyanski L, Lawson K, Sartori MA, Alibeh S, Tieu D, Masud S, Mero P, Weiss A, Brown KR, Usaj M, Billmann M, Rahman M, Constanzo M, Myers CL, Andrews BJ, Boone C, Durocher D, Moffat J.

G3 (Bethesda). 2017 Aug 7;7(8):2719-2727. doi: 10.1534/g3.117.041277.

5.

Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization.

Wang C, Lu T, Emanuel G, Babcock HP, Zhuang X.

Proc Natl Acad Sci U S A. 2019 May 28;116(22):10842-10851. doi: 10.1073/pnas.1903808116. Epub 2019 May 13.

6.

Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

de Groot R, Lüthi J, Lindsay H, Holtackers R, Pelkmans L.

Mol Syst Biol. 2018 Jan 23;14(1):e8064. doi: 10.15252/msb.20178064.

7.

Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection.

Kim HS, Lee K, Kim SJ, Cho S, Shin HJ, Kim C, Kim JS.

Genome Res. 2018 Jun;28(6):859-868. doi: 10.1101/gr.230250.117. Epub 2018 Apr 30.

8.

Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays.

Henser-Brownhill T, Monserrat J, Scaffidi P.

Epigenetics. 2017;12(12):1065-1075. doi: 10.1080/15592294.2017.1395121. Epub 2018 Jan 12.

9.

Cyclophilin A (CypA) interacts with NF-κB subunit, p65/RelA, and contributes to NF-κB activation signaling.

Sun S, Guo M, Zhang JB, Ha A, Yokoyama KK, Chiu RH.

PLoS One. 2014 Aug 12;9(8):e96211. doi: 10.1371/journal.pone.0096211. eCollection 2014.

10.

Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps.

Kampmann M, Bassik MC, Weissman JS.

Nat Protoc. 2014 Aug;9(8):1825-47. doi: 10.1038/nprot.2014.103. Epub 2014 Jul 3. Erratum in: Nat Protoc. 2015 Apr;10(4):643.

11.

A comprehensive platform for highly multiplexed mammalian functional genetic screens.

Ketela T, Heisler LE, Brown KR, Ammar R, Kasimer D, Surendra A, Ericson E, Blakely K, Karamboulas D, Smith AM, Durbic T, Arnoldo A, Cheung-Ong K, Koh JL, Gopal S, Cowley GS, Yang X, Grenier JK, Giaever G, Root DE, Moffat J, Nislow C.

BMC Genomics. 2011 May 6;12:213. doi: 10.1186/1471-2164-12-213.

12.

CRISPulator: a discrete simulation tool for pooled genetic screens.

Nagy T, Kampmann M.

BMC Bioinformatics. 2017 Jul 21;18(1):347. doi: 10.1186/s12859-017-1759-9.

13.

A functional genomics screen for microRNA regulators of NF-kappaB signaling.

Olarerin-George AO, Anton L, Hwang YC, Elovitz MA, Hogenesch JB.

BMC Biol. 2013 Feb 28;11:19. doi: 10.1186/1741-7007-11-19.

14.

PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens.

Lenoir WF, Lim TL, Hart T.

Nucleic Acids Res. 2018 Jan 4;46(D1):D776-D780. doi: 10.1093/nar/gkx993.

15.

Protein kinase Cdelta activates RelA/p65 and nuclear factor-kappaB signaling in response to tumor necrosis factor-alpha.

Lu ZG, Liu H, Yamaguchi T, Miki Y, Yoshida K.

Cancer Res. 2009 Jul 15;69(14):5927-35. doi: 10.1158/0008-5472.CAN-08-4786. Epub 2009 Jun 23.

16.

CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons.

Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, Prabhu AV, Fernandopulle MS, Patel R, Abshari M, Ward ME, Kampmann M.

Neuron. 2019 Oct 23;104(2):239-255.e12. doi: 10.1016/j.neuron.2019.07.014. Epub 2019 Aug 15.

PMID:
31422865
17.

Protocols for CRISPR-Cas9 Screening in Lymphoma Cell Lines.

Webster DE, Roulland S, Phelan JD.

Methods Mol Biol. 2019;1956:337-350. doi: 10.1007/978-1-4939-9151-8_16.

PMID:
30779043
18.

CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.

Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD, Golji J, Ruddy DA, Yu K, McAllister G, DeWeck A, Abramowski D, Wan J, Shirley MD, Neshat SY, Rakiec D, de Beaumont R, Weber O, Kauffmann A, McDonald ER 3rd, Keen N, Hofmann F, Sellers WR, Schmelzle T, Stegmeier F, Schlabach MR.

Cancer Discov. 2016 Aug;6(8):900-13. doi: 10.1158/2159-8290.CD-16-0178. Epub 2016 Jun 3.

19.

Automated analysis of NF-κB nuclear translocation kinetics in high-throughput screening.

Di Z, Herpers B, Fredriksson L, Yan K, van de Water B, Verbeek FJ, Meerman JH.

PLoS One. 2012;7(12):e52337. doi: 10.1371/journal.pone.0052337. Epub 2012 Dec 27.

20.

CRISPR/Cas9 screening using unique molecular identifiers.

Schmierer B, Botla SK, Zhang J, Turunen M, Kivioja T, Taipale J.

Mol Syst Biol. 2017 Oct 9;13(10):945. doi: 10.15252/msb.20177834.

Supplemental Content

Support Center