Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Intrinsic disorder and amino acid specificity modulate binding of the WW2 domain in kidney and brain protein (KIBRA) to synaptopodin.

Kwok E, Rodriguez DJ, Kremerskothen J, Nyarko A.

J Biol Chem. 2019 Nov 15;294(46):17383-17394. doi: 10.1074/jbc.RA119.009589. Epub 2019 Oct 9.

PMID:
31597702
2.

Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.

Webb C, Upadhyay A, Giuntini F, Eggleston I, Furutani-Seiki M, Ishima R, Bagby S.

Biochemistry. 2011 Apr 26;50(16):3300-9. doi: 10.1021/bi2001888. Epub 2011 Mar 31.

PMID:
21417403
3.

Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

McDonald CB, Buffa L, Bar-Mag T, Salah Z, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Malhotra A, Sudol M, Aqeilan RI, Nawaz Z, Farooq A.

J Mol Biol. 2012 Sep 7;422(1):58-74. doi: 10.1016/j.jmb.2012.05.015. Epub 2012 May 23.

4.

Allostery mediates ligand binding to WWOX tumor suppressor via a conformational switch.

Schuchardt BJ, Mikles DC, Bhat V, McDonald CB, Sudol M, Farooq A.

J Mol Recognit. 2015 Apr;28(4):220-31. doi: 10.1002/jmr.2419. Epub 2015 Feb 19.

5.

Molecular origin of the binding of WWOX tumor suppressor to ErbB4 receptor tyrosine kinase.

Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A.

Biochemistry. 2013 Dec 23;52(51):9223-36. doi: 10.1021/bi400987k. Epub 2013 Dec 13.

6.

Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6--modeling and analysis.

Sangadala S, Metpally RP, Reddy BV.

J Biomol Struct Dyn. 2007 Aug;25(1):11-23.

PMID:
17676934
7.

Molecular Interaction Between Smurfl WW2 Domain and PPXY Motifs of Smadl, Smad5, and Smad6-Modeling and Analysis.

Sangadala S, Rao Metpally RP, B Reddy BV.

J Biomol Struct Dyn. 2007 Aug;25(1):11-23.

PMID:
22670624
8.

Biophysical studies and NMR structure of YAP2 WW domain - LATS1 PPxY motif complexes reveal the basis of their interaction.

Verma A, Jing-Song F, Finch-Edmondson ML, Velazquez-Campoy A, Balasegaran S, Sudol M, Sivaraman J.

Oncotarget. 2018 Jan 3;9(8):8068-8080. doi: 10.18632/oncotarget.23909. eCollection 2018 Jan 30.

9.

Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

McDonald CB, McIntosh SK, Mikles DC, Bhat V, Deegan BJ, Seldeen KL, Saeed AM, Buffa L, Sudol M, Nawaz Z, Farooq A.

Biochemistry. 2011 Nov 8;50(44):9616-27. doi: 10.1021/bi201286p. Epub 2011 Oct 14.

10.

Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.

Klippel S, Wieczorek M, Schümann M, Krause E, Marg B, Seidel T, Meyer T, Knapp EW, Freund C.

J Biol Chem. 2011 Nov 4;286(44):38478-87. doi: 10.1074/jbc.M111.265710. Epub 2011 Sep 14.

11.

Interactions of U24 from Roseolovirus with WW domains: canonical vs noncanonical.

Sang Y, Zhang R, Creagh AL, Haynes CA, Straus SK.

Biochem Cell Biol. 2017 Jun;95(3):350-358. doi: 10.1139/bcb-2016-0250. Epub 2017 Mar 17.

PMID:
28314105
12.

Characterization of substrate binding of the WW domains in human WWP2 protein.

Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z.

FEBS Lett. 2015 Jul 8;589(15):1935-42. doi: 10.1016/j.febslet.2015.05.021. Epub 2015 May 19.

13.

Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily.

Ohnishi S, Tochio N, Tomizawa T, Akasaka R, Harada T, Seki E, Sato M, Watanabe S, Fujikura Y, Koshiba S, Terada T, Shirouzu M, Tanaka A, Kigawa T, Yokoyama S.

Protein Sci. 2008 Sep;17(9):1531-41. doi: 10.1110/ps.035329.108. Epub 2008 Jun 18.

14.

Coupling of tandem Smad ubiquitination regulatory factor (Smurf) WW domains modulates target specificity.

Chong PA, Lin H, Wrana JL, Forman-Kay JD.

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18404-9. doi: 10.1073/pnas.1003023107. Epub 2010 Oct 11.

15.

Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel.

Henry PC, Kanelis V, O'Brien MC, Kim B, Gautschi I, Forman-Kay J, Schild L, Rotin D.

J Biol Chem. 2003 May 30;278(22):20019-28. Epub 2003 Mar 22.

16.

Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor.

Farooq A.

Exp Biol Med (Maywood). 2015 Mar;240(3):361-74. doi: 10.1177/1535370214561586. Epub 2015 Feb 7. Review.

17.

Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.

Wiesner S, Stier G, Sattler M, Macias MJ.

J Mol Biol. 2002 Dec 6;324(4):807-22.

PMID:
12460579
18.

Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering.

Tang HC, Lin YJ, Horng JC.

Proteins. 2014 Jan;82(1):67-76. doi: 10.1002/prot.24359. Epub 2013 Aug 31.

PMID:
23839950
19.
20.

Identification of the WW domain-interaction sites in the unstructured N-terminal domain of EBV LMP 2A.

Seo MD, Park SJ, Kim HJ, Lee BJ.

FEBS Lett. 2007 Jan 9;581(1):65-70. Epub 2006 Dec 11.

Supplemental Content

Support Center