Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Dual Corona Vesicles with Intrinsic Antibacterial and Enhanced Antibiotic Delivery Capabilities for Effective Treatment of Biofilm-Induced Periodontitis.

Xi Y, Wang Y, Gao J, Xiao Y, Du J.

ACS Nano. 2019 Oct 10. doi: 10.1021/acsnano.9b03237. [Epub ahead of print]

PMID:
31585041
2.

Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities.

Wang M, Zhou C, Chen J, Xiao Y, Du J.

Bioconjug Chem. 2015 Apr 15;26(4):725-34. doi: 10.1021/acs.bioconjchem.5b00061. Epub 2015 Mar 10.

PMID:
25721382
3.

Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T₂ MRI and Drug Delivery.

Qin J, Liu Q, Zhang J, Chen J, Chen S, Zhao Y, Du J.

ACS Appl Mater Interfaces. 2015 Jul 1;7(25):14043-52. doi: 10.1021/acsami.5b03222. Epub 2015 Jun 18.

PMID:
26046951
4.

Asymmetrical polymer vesicles with a "stealthy" outer corona and an endosomal-escape-accelerating inner corona for efficient intracellular anticancer drug delivery.

Liu Q, Chen J, Du J.

Biomacromolecules. 2014 Aug 11;15(8):3072-82. doi: 10.1021/bm500676e. Epub 2014 Jul 15.

PMID:
25000487
5.
6.

Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms.

Ferreira IS, Bettencourt AF, Gonçalves LM, Kasper S, Bétrisey B, Kikhney J, Moter A, Trampuz A, Almeida AJ.

Int J Nanomedicine. 2015 Jul 7;10:4351-66. doi: 10.2147/IJN.S84108. eCollection 2015.

7.

Antibiotics Enhance Prevention and Eradication Efficacy of Cathodic-Voltage-Controlled Electrical Stimulation against Titanium-Associated Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Biofilms.

Canty MK, Hansen LA, Tobias M, Spencer S, Henry T, Luke-Marshall NR, Campagnari AA, Ehrensberger MT.

mSphere. 2019 May 1;4(3). pii: e00178-19. doi: 10.1128/mSphere.00178-19.

8.

Direct Synthesis of Dextran-Based Antibacterial Hydrogels for Extended Release of Biocides and Eradication of Topical Biofilms.

Hoque J, Haldar J.

ACS Appl Mater Interfaces. 2017 May 17;9(19):15975-15985. doi: 10.1021/acsami.7b03208. Epub 2017 May 2.

PMID:
28422484
9.

Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities.

Lu J, Turnbull L, Burke CM, Liu M, Carter DA, Schlothauer RC, Whitchurch CB, Harry EJ.

PeerJ. 2014 Mar 25;2:e326. doi: 10.7717/peerj.326. eCollection 2014.

10.

Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.

Porter SL, Coulter SM, Pentlavalli S, Thompson TP, Laverty G.

Acta Biomater. 2018 Sep 1;77:96-105. doi: 10.1016/j.actbio.2018.07.033. Epub 2018 Jul 19.

PMID:
30031161
11.
12.

Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

Binkhathlan Z, Qamar W, Ali R, Kfoury H, Alghonaim M.

Saudi Pharm J. 2017 Sep;25(6):944-953. doi: 10.1016/j.jsps.2017.04.001. Epub 2017 Apr 12.

13.

Full and broad-spectrum in vivo eradication of catheter-associated biofilms using gentamicin-EDTA antibiotic lock therapy.

Chauhan A, Lebeaux D, Ghigo JM, Beloin C.

Antimicrob Agents Chemother. 2012 Dec;56(12):6310-8. doi: 10.1128/AAC.01606-12. Epub 2012 Oct 1.

14.

Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models.

Liu Y, Ren Y, Li Y, Su L, Zhang Y, Huang F, Liu J, Liu J, van Kooten TG, An Y, Shi L, van der Mei HC, Busscher HJ.

Acta Biomater. 2018 Oct 1;79:331-343. doi: 10.1016/j.actbio.2018.08.038. Epub 2018 Aug 31.

PMID:
30172935
15.

Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: A comparison with conventional triple therapy.

Chen X, Li P, Shen Y, Zou Y, Yuan G, Hu H.

Microb Pathog. 2019 Jun;131:112-119. doi: 10.1016/j.micpath.2019.04.001. Epub 2019 Apr 2.

PMID:
30951818
16.

Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study.

Singh R, Ray P, Das A, Sharma M.

J Med Microbiol. 2009 Aug;58(Pt 8):1067-73. doi: 10.1099/jmm.0.009720-0. Epub 2009 Jun 15.

PMID:
19528167
17.

Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus.

Tkhilaishvili T, Lombardi L, Klatt AB, Trampuz A, Di Luca M.

Int J Antimicrob Agents. 2018 Dec;52(6):842-853. doi: 10.1016/j.ijantimicag.2018.09.006. Epub 2018 Sep 17.

PMID:
30236955
18.

Nitroxoline: a broad-spectrum biofilm-eradicating agent against pathogenic bacteria.

Abouelhassan Y, Yang Q, Yousaf H, Nguyen MT, Rolfe M, Schultz GS, Huigens RW 3rd.

Int J Antimicrob Agents. 2017 Feb;49(2):247-251. doi: 10.1016/j.ijantimicag.2016.10.017. Epub 2016 Dec 6.

PMID:
28110918
19.

Rifampicin-Manuka Honey Combinations Are Superior to Other Antibiotic-Manuka Honey Combinations in Eradicating Staphylococcus aureus Biofilms.

Liu MY, Cokcetin NN, Lu J, Turnbull L, Carter DA, Whitchurch CB, Harry EJ.

Front Microbiol. 2018 Jan 11;8:2653. doi: 10.3389/fmicb.2017.02653. eCollection 2017.

20.

Antibiotic resistance: a "dark side" of biofilm‑associated chronic infections.

Marcinkiewicz J, Strus M, Pasich E.

Pol Arch Med Wewn. 2013;123(6):309-13. Review.

Supplemental Content

Support Center