Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Development and use of interspecies correlation estimation models in China for potential application in water quality criteria.

Wang X, Fan B, Fan M, Belanger S, Li J, Chen J, Gao X, Liu Z.

Chemosphere. 2019 Sep 16;240:124848. doi: 10.1016/j.chemosphere.2019.124848. [Epub ahead of print]

PMID:
31541901
2.

Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China.

Feng CL, Wu FC, Dyer SD, Chang H, Zhao XL.

Chemosphere. 2013 Jan;90(3):1177-83. doi: 10.1016/j.chemosphere.2012.09.026. Epub 2012 Oct 8.

PMID:
23058200
3.

Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria.

Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Raimondo S, Barron MG.

Environ Sci Technol. 2008 Apr 15;42(8):3076-83.

PMID:
18497169
4.

Derivation of freshwater water quality criteria for dibutyltin dilaurate from measured data and data predicted using interspecies correlation estimate models.

Zhang S, Wang L, Wang Z, Fan D, Shi L, Liu J.

Chemosphere. 2017 Mar;171:142-148. doi: 10.1016/j.chemosphere.2016.12.046. Epub 2016 Dec 12.

PMID:
28013075
5.

Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China.

Wu J, Liu Z, Yan Z, Yi X.

Environ Sci Pollut Res Int. 2015 Jun;22(12):9457-63. doi: 10.1007/s11356-015-4091-9. Epub 2015 Jan 23.

PMID:
25608455
6.

Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.

Awkerman JA, Raimondo S, Jackson CR, Barron MG.

Environ Toxicol Chem. 2014 Mar;33(3):688-95. doi: 10.1002/etc.2456. Epub 2014 Jan 24.

PMID:
24214839
7.

Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species.

Bejarano AC, Barron MG.

Environ Sci Technol. 2014 Apr 15;48(8):4564-72. doi: 10.1021/es500649v. Epub 2014 Mar 28.

PMID:
24678991
8.

Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species.

Fan J, Yan Z, Zheng X, Wu J, Wang S, Wang P, Zhang Q.

Chemosphere. 2019 Jun;224:833-839. doi: 10.1016/j.chemosphere.2019.03.007. Epub 2019 Mar 3.

PMID:
30851535
9.

Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for benzo[a]pyrene.

Wu J, Yan Z, Yi X, Lin Y, Ni J, Gao X, Liu Z, Shi X.

Chemosphere. 2016 Feb;144:2183-8. doi: 10.1016/j.chemosphere.2015.10.099. Epub 2015 Nov 18.

PMID:
26595312
10.

Framework for Optimizing Selection of Interspecies Correlation Estimation Models to Address Species Diversity and Toxicity Gaps in an Aquatic Database.

Bejarano AC, Raimondo S, Barron MG.

Environ Sci Technol. 2017 Jul 18;51(14):8158-8165. doi: 10.1021/acs.est.7b01493. Epub 2017 Jul 6.

11.

Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species.

Raimondo S, Jackson CR, Barron MG.

Environ Sci Technol. 2010 Oct 1;44(19):7711-6. doi: 10.1021/es101630b.

PMID:
20795664
12.

Aqueous and tissue residue-based interspecies correlation estimation models provide conservative hazard estimates for aromatic compounds.

Bejarano AC, Barron MG.

Environ Toxicol Chem. 2016 Jan;35(1):56-64. doi: 10.1002/etc.3164. Epub 2015 Nov 24.

PMID:
26184086
13.

Interspecies correlation estimates predict protective environmental concentrations.

Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Mayer FL.

Environ Sci Technol. 2006 May 1;40(9):3102-11.

PMID:
16719118
14.

Development of algal interspecies correlation estimation models for chemical hazard assessment.

Brill JL, Belanger SE, Chaney JG, Dyer SD, Raimondo S, Barron MG, Pittinger CA.

Environ Toxicol Chem. 2016 Sep;35(9):2368-78. doi: 10.1002/etc.3375. Epub 2016 Jun 10.

PMID:
26792236
15.

Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models.

Awkerman JA, Raimondo S, Barron MG.

Environ Sci Technol. 2008 May 1;42(9):3447-52.

PMID:
18522132
16.

Toxicity of ammonia, cadmium, and nitrobenzene to four local fishes in the Liao River, China and the derivation of site-specific water quality criteria.

Liu Z, Li X, Tai P, Sun L, Yuan H, Yang X.

Ecotoxicol Environ Saf. 2018 Jan;147:656-663. doi: 10.1016/j.ecoenv.2017.09.008. Epub 2017 Oct 10.

PMID:
28934709
17.

Evaluation of in silico development of aquatic toxicity species sensitivity distributions.

Barron MG, Jackson CR, Awkerman JA.

Aquat Toxicol. 2012 Jul 15;116-117:1-7. doi: 10.1016/j.aquatox.2012.02.006. Epub 2012 Mar 3.

PMID:
22459408
18.

Deriving acute and chronic predicted no effect concentrations of pharmaceuticals and personal care products based on species sensitivity distributions.

Zhao W, Wang B, Wang Y, Deng S, Huang J, Yu G.

Ecotoxicol Environ Saf. 2017 Oct;144:537-542. doi: 10.1016/j.ecoenv.2017.06.058. Epub 2017 Jul 5.

PMID:
28688354
19.

Methods for deriving pesticide aquatic life criteria.

TenBrook PL, Tjeerdema RS, Hann P, Karkoski J.

Rev Environ Contam Toxicol. 2009;199:19-109. Review.

PMID:
19110939
20.

Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.

Liu Y, Wu F, Mu Y, Feng C, Fang Y, Chen L, Giesy JP.

Rev Environ Contam Toxicol. 2014;230:35-57. doi: 10.1007/978-3-319-04411-8_2. Review.

PMID:
24609517

Supplemental Content

Support Center