Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Empagliflozin Protects HK-2 Cells from High Glucose-Mediated Injuries via a Mitochondrial Mechanism.

Lee WC, Chau YY, Ng HY, Chen CH, Wang PW, Liou CW, Lin TK, Chen JB.

Cells. 2019 Sep 14;8(9). pii: E1085. doi: 10.3390/cells8091085.

2.

Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy.

Lee YH, Kim SH, Kang JM, Heo JH, Kim DJ, Park SH, Sung M, Kim J, Oh J, Yang DH, Lee SH, Lee SY.

Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F767-F780. doi: 10.1152/ajprenal.00565.2018. Epub 2019 Aug 7.

PMID:
31390268
3.

Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission.

Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J.

Redox Biol. 2018 May;15:335-346. doi: 10.1016/j.redox.2017.12.019. Epub 2017 Dec 30.

4.

Inhalation of Hydrogen of Different Concentrations Ameliorates Spinal Cord Injury in Mice by Protecting Spinal Cord Neurons from Apoptosis, Oxidative Injury and Mitochondrial Structure Damages.

Chen X, Cui J, Zhai X, Zhang J, Gu Z, Zhi X, Weng W, Pan P, Cao L, Ji F, Wang Z, Su J.

Cell Physiol Biochem. 2018;47(1):176-190. doi: 10.1159/000489764. Epub 2018 May 10.

5.

Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy.

Zhan M, Usman I, Yu J, Ruan L, Bian X, Yang J, Yang S, Sun L, Kanwar YS.

Clin Sci (Lond). 2018 Jun 26;132(12):1297-1314. doi: 10.1042/CS20180005. Print 2018 Jun 29.

PMID:
29760122
6.

Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose.

Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW.

DNA Cell Biol. 2016 Nov;35(11):657-665. Epub 2016 Jul 15.

PMID:
27420408
7.

Astragaloside IV ameliorates high glucose-induced HK-2 cell apoptosis and oxidative stress by regulating the Nrf2/ARE signaling pathway.

Wang J, Guo HM.

Exp Ther Med. 2019 Jun;17(6):4409-4416. doi: 10.3892/etm.2019.7495. Epub 2019 Apr 17.

8.

Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts.

Mizuno M, Kuno A, Yano T, Miki T, Oshima H, Sato T, Nakata K, Kimura Y, Tanno M, Miura T.

Physiol Rep. 2018 Jun;6(12):e13741. doi: 10.14814/phy2.13741.

9.

Hyperglycaemia Stress-Induced Renal Injury is Caused by Extensive Mitochondrial Fragmentation, Attenuated MKP1 Signalling, and Activated JNK-CaMKII-Fis1 Biological Axis.

Zhang Y, Feng J, Wang Q, Zhao S, Yang S, Tian L, Meng P, Li J, Li H.

Cell Physiol Biochem. 2018;51(4):1778-1798. doi: 10.1159/000495681. Epub 2018 Nov 30.

10.

Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease.

Zhan M, Usman IM, Sun L, Kanwar YS.

J Am Soc Nephrol. 2015 Jun;26(6):1304-21. doi: 10.1681/ASN.2014050457. Epub 2014 Sep 30.

11.

Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways.

Ye J, Li J, Xia R, Zhou M, Yu L.

Free Radic Res. 2015;49(11):1393-403. doi: 10.3109/10715762.2015.1075654. Epub 2015 Sep 2.

PMID:
26198983
12.

Loading MiR-210 in Endothelial Progenitor Cells Derived Exosomes Boosts Their Beneficial Effects on Hypoxia/Reoxygeneation-Injured Human Endothelial Cells via Protecting Mitochondrial Function.

Ma X, Wang J, Li J, Ma C, Chen S, Lei W, Yang Y, Liu S, Bihl J, Chen C.

Cell Physiol Biochem. 2018;46(2):664-675. doi: 10.1159/000488635. Epub 2018 Mar 29.

13.

p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway.

Sun L, Xiao L, Nie J, Liu FY, Ling GH, Zhu XJ, Tang WB, Chen WC, Xia YC, Zhan M, Ma MM, Peng YM, Liu H, Liu YH, Kanwar YS.

Am J Physiol Renal Physiol. 2010 Nov;299(5):F1014-25. doi: 10.1152/ajprenal.00414.2010. Epub 2010 Aug 25.

14.

Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology.

Zhang C, Shi Z, Zhang L, Zhou Z, Zheng X, Liu G, Bu G, Fraser PE, Xu H, Zhang YW.

J Cell Sci. 2016 Mar 1;129(5):994-1002. doi: 10.1242/jcs.176792. Epub 2016 Jan 26.

15.

Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells.

Park J, Choi H, Min JS, Kim B, Lee SR, Yun JW, Choi MS, Chang KT, Lee DS.

J Neurochem. 2015 Mar;132(6):687-702. doi: 10.1111/jnc.12984. Epub 2015 Jan 13.

16.

Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells.

Munusamy S, MacMillan-Crow LA.

Free Radic Biol Med. 2009 Apr 15;46(8):1149-57. doi: 10.1016/j.freeradbiomed.2009.01.022. Epub 2009 Feb 3.

PMID:
19439219
18.

The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1.

Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, Wang J, Qin Y, Liu Y, Tang C, He L, Greka A, Zhou Z, Liu F, Dong Z, Sun L.

Redox Biol. 2017 Apr;11:297-311. doi: 10.1016/j.redox.2016.12.022. Epub 2016 Dec 21.

19.

Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis.

Cho SG, Du Q, Huang S, Dong Z.

Am J Physiol Renal Physiol. 2010 Jul;299(1):F199-206. doi: 10.1152/ajprenal.00716.2009. Epub 2010 Apr 21.

20.

Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins.

Wu S, Zhou F, Zhang Z, Xing D.

FEBS J. 2011 Apr;278(6):941-54. doi: 10.1111/j.1742-4658.2011.08010.x. Epub 2011 Feb 3.

Supplemental Content

Support Center