Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.

Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F, Wang Y.

Nat Commun. 2019 Sep 19;10(1):4284. doi: 10.1038/s41467-019-12281-8.

2.

Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.

Yamamoto A, Ishida T, Yoshimura M, Kimura Y, Sawa S.

Plant Cell Physiol. 2019 Oct 1;60(10):2255-2262. doi: 10.1093/pcp/pcz118.

PMID:
31198958
3.

High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells.

Idoko-Akoh A, Taylor L, Sang HM, McGrew MJ.

Sci Rep. 2018 Oct 11;8(1):15126. doi: 10.1038/s41598-018-33244-x.

4.

Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage.

Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, Weinhardt N, Fodor E, Welker E.

Genome Biol. 2017 Oct 6;18(1):190. doi: 10.1186/s13059-017-1318-8.

5.

High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK.

Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.

6.

In Planta Processing of the SpCas9-gRNA Complex.

Mikami M, Toki S, Endo M.

Plant Cell Physiol. 2017 Nov 1;58(11):1857-1867. doi: 10.1093/pcp/pcx154.

7.

Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases.

Zhang D, Zhang H, Li T, Chen K, Qiu JL, Gao C.

Genome Biol. 2017 Oct 11;18(1):191. doi: 10.1186/s13059-017-1325-9.

8.

Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNAGln-processing system in human cells.

He X, Wang Y, Yang F, Wang B, Xie H, Gu L, Zhao T, Liu X, Zhang D, Ren Q, Liu X, Liu Y, Gao C, Gu F.

J Biol Chem. 2019 Jun 7;294(23):9308-9315. doi: 10.1074/jbc.RA119.007791. Epub 2019 Apr 22.

PMID:
31010827
9.

CRISPR Explorer: A fast and intuitive tool for designing guide RNA for genome editing.

Chen K, Jin Y, Lin YC.

J Biol Methods. 2016 Oct 10;3(4):e56. doi: 10.14440/jbm.2016.138. eCollection 2016.

10.

CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

Zhu LJ, Holmes BR, Aronin N, Brodsky MH.

PLoS One. 2014 Sep 23;9(9):e108424. doi: 10.1371/journal.pone.0108424. eCollection 2014.

11.

Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.

Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K.

Plant Biotechnol J. 2019 Feb;17(2):362-372. doi: 10.1111/pbi.12982. Epub 2018 Jul 22.

12.

Recent Advances in Genome Editing Using CRISPR/Cas9.

Ding Y, Li H, Chen LL, Xie K.

Front Plant Sci. 2016 May 24;7:703. doi: 10.3389/fpls.2016.00703. eCollection 2016. Review.

13.

Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.

Jensen KT, Fløe L, Petersen TS, Huang J, Xu F, Bolund L, Luo Y, Lin L.

FEBS Lett. 2017 Jul;591(13):1892-1901. doi: 10.1002/1873-3468.12707. Epub 2017 Jun 28.

14.

Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.

Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ.

Plant Mol Biol. 2018 Mar;96(4-5):445-456. doi: 10.1007/s11103-018-0709-x. Epub 2018 Feb 23.

15.

Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9.

Park J, Kim JS, Bae S.

Bioinformatics. 2016 Jul 1;32(13):2017-23. doi: 10.1093/bioinformatics/btw103. Epub 2016 Feb 24.

16.

Hot News: Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.

Soriano V.

AIDS Rev. 2017 Oct-Dec;19(3):167-172.

PMID:
29019352
17.

Genome Editing with CRISPR-Cas9: Can It Get Any Better?

Haeussler M, Concordet JP.

J Genet Genomics. 2016 May 20;43(5):239-50. doi: 10.1016/j.jgg.2016.04.008. Epub 2016 Apr 24. Review.

18.

Cpf1-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cpf1.

Park J, Bae S.

Bioinformatics. 2018 Mar 15;34(6):1077-1079. doi: 10.1093/bioinformatics/btx695.

PMID:
29186338
19.

EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens.

Peng D, Tarleton R.

Microb Genom. 2015 Oct 30;1(4):e000033. doi: 10.1099/mgen.0.000033. eCollection 2015 Oct.

20.

Supplemental Content

Support Center