Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Controlling Bi-Provoked Nanostructure Formation in GaAs/GaAsBi Core-Shell Nanowires.

Matsuda T, Takada K, Yano K, Tsutsumi R, Yoshikawa K, Shimomura S, Shimizu Y, Nagashima K, Yanagida T, Ishikawa F.

Nano Lett. 2019 Sep 27. doi: 10.1021/acs.nanolett.9b02932. [Epub ahead of print]

PMID:
31525986
2.

Metamorphic GaAs/GaAsBi Heterostructured Nanowires.

Ishikawa F, Akamatsu Y, Watanabe K, Uesugi F, Asahina S, Jahn U, Shimomura S.

Nano Lett. 2015 Nov 11;15(11):7265-72. doi: 10.1021/acs.nanolett.5b02316. Epub 2015 Oct 28.

PMID:
26501188
3.

Unidirectional lateral nanowire formation during the epitaxial growth of GaAsBi on vicinal substrates.

Collar KN, Li J, Jiao W, Kong W, Brown AS.

Nanotechnology. 2018 Jan 19;29(3):035604. doi: 10.1088/1361-6528/aa9e34.

PMID:
29186010
4.

All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.

Yu X, Wang H, Pan D, Zhao J, Misuraca J, von Molnár S, Xiong P.

Nano Lett. 2013 Apr 10;13(4):1572-7. doi: 10.1021/nl304740k. Epub 2013 Mar 26.

PMID:
23517546
5.

Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires.

Yu X, Wang H, Lu J, Zhao J, Misuraca J, Xiong P, von Molnár S.

Nano Lett. 2012 Oct 10;12(10):5436-42. doi: 10.1021/nl303323t. Epub 2012 Sep 18.

PMID:
22984828
6.

Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers.

Huang H, Ren X, Ye X, Guo J, Wang Q, Yang Y, Cai S, Huang Y.

Nano Lett. 2010 Jan;10(1):64-8. doi: 10.1021/nl902842g.

PMID:
20000817
7.

Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires.

Filippov S, Jansson M, Stehr JE, Palisaitis J, Persson PO, Ishikawa F, Chen WM, Buyanova IA.

Nanoscale. 2016 Sep 21;8(35):15939-47. doi: 10.1039/c6nr05168e. Epub 2016 Aug 18.

PMID:
27537077
8.

Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.

Wood AW, Collar K, Li J, Brown AS, Babcock SE.

Nanotechnology. 2016 Mar 18;27(11):115704. doi: 10.1088/0957-4484/27/11/115704. Epub 2016 Feb 15.

PMID:
26876494
9.

Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant.

Lewis RB, Corfdir P, Herranz J, Küpers H, Jahn U, Brandt O, Geelhaar L.

Nano Lett. 2017 Jul 12;17(7):4255-4260. doi: 10.1021/acs.nanolett.7b01185. Epub 2017 Jun 29.

PMID:
28654278
10.

In situ mechanical resonance behaviour of pristine and defective zinc blende GaAs nanowires.

Pickering E, Bo A, Zhan H, Liao X, Tan HH, Gu Y.

Nanoscale. 2018 Feb 1;10(5):2588-2595. doi: 10.1039/c7nr07449b.

PMID:
29350729
11.

Growth of Pure Zinc-Blende GaAs(P) Core-Shell Nanowires with Highly Regular Morphology.

Zhang Y, Fonseka HA, Aagesen M, Gott JA, Sanchez AM, Wu J, Kim D, Jurczak P, Huo S, Liu H.

Nano Lett. 2017 Aug 9;17(8):4946-4950. doi: 10.1021/acs.nanolett.7b02063. Epub 2017 Jul 31.

12.

Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures.

Shi S, Zhang Z, Lu Z, Shu H, Chen P, Li N, Zou J, Lu W.

Nanoscale Res Lett. 2015 Mar 1;10:108. doi: 10.1186/s11671-015-0812-8. eCollection 2015.

13.

Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates.

Kang JH, Gao Q, Parkinson P, Joyce HJ, Tan HH, Kim Y, Guo Y, Xu H, Zou J, Jagadish C.

Nanotechnology. 2012 Oct 19;23(41):415702. Epub 2012 Sep 27.

PMID:
23018759
14.

Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM.

Baladés N, Sales DL, Herrera M, Tan CH, Liu Y, Richards RD, Molina SI.

Nanoscale Res Lett. 2018 Apr 25;13(1):125. doi: 10.1186/s11671-018-2530-5.

15.

Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate.

Tomioka K, Kobayashi Y, Motohisa J, Hara S, Fukui T.

Nanotechnology. 2009 Apr 8;20(14):145302. doi: 10.1088/0957-4484/20/14/145302. Epub 2009 Mar 17.

PMID:
19420521
16.

GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique.

Patil PK, Luna E, Matsuda T, Yamada K, Kamiya K, Ishikawa F, Shimomura S.

Nanotechnology. 2017 Mar 10;28(10):105702. doi: 10.1088/1361-6528/aa596c. Epub 2017 Feb 1.

PMID:
28145284
17.

Hybrid III-V/IV Nanowires: High-Quality Ge Shell Epitaxy on GaAs Cores.

Zeng H, Yu X, Fonseka HA, Gott JA, Tang M, Zhang Y, Boras G, Xu J, Sanchez AM, Liu H.

Nano Lett. 2018 Oct 10;18(10):6397-6403. doi: 10.1021/acs.nanolett.8b02760. Epub 2018 Sep 13.

PMID:
30205011
18.

Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.

Yu X, Li L, Wang H, Xiao J, Shen C, Pan D, Zhao J.

Nanoscale. 2016 May 19;8(20):10615-21. doi: 10.1039/c5nr07830j.

PMID:
27194599
19.

Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.

Zhou C, Zhang XT, Zheng K, Chen PP, Matsumura S, Lu W, Zou J.

Nanoscale. 2019 Apr 4;11(14):6859-6865. doi: 10.1039/c9nr01715a.

PMID:
30912781
20.

Effect of V/III ratio on the structural and optical properties of self-catalysed GaAs nanowires.

Ahtapodov L, Munshi AM, Nilsen JS, Reinertsen JF, Dheeraj DL, Fimland BO, van Helvoort AT, Weman H.

Nanotechnology. 2016 Nov 4;27(44):445711. Epub 2016 Sep 30.

PMID:
27688265

Supplemental Content

Support Center