Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Dextran as an elicitor of phenylpropanoid and flavonoid biosynthesis in tomato fruit against gray mold infection.

Lu L, Ji L, Shi R, Li S, Zhang X, Guo Q, Wang C, Qiao L.

Carbohydr Polym. 2019 Dec 1;225:115236. doi: 10.1016/j.carbpol.2019.115236. Epub 2019 Aug 26.

PMID:
31521274
2.

Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea.

Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T.

Carbohydr Polym. 2018 Nov 1;199:341-352. doi: 10.1016/j.carbpol.2018.07.045. Epub 2018 Jul 18.

PMID:
30143138
3.

Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.

Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C.

J Plant Physiol. 2015 Mar 1;175:163-73. doi: 10.1016/j.jplph.2014.11.004. Epub 2014 Nov 26.

PMID:
25543862
4.

Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.

Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C.

Plant J. 2007 Dec;52(6):1027-40. Epub 2007 Oct 3.

5.

SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.

Yu W, Zhao R, Sheng J, Shen L.

J Agric Food Chem. 2018 Sep 26;66(38):9923-9932. doi: 10.1021/acs.jafc.8b03971. Epub 2018 Sep 18.

PMID:
30192535
6.

Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.

Shah P, Powell AL, Orlando R, Bergmann C, Gutierrez-Sanchez G.

J Proteome Res. 2012 Apr 6;11(4):2178-92. doi: 10.1021/pr200965c. Epub 2012 Mar 20.

7.

Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses.

Tang Q, Zhu F, Cao X, Zheng X, Yu T, Lu L.

Food Chem. 2019 Apr 25;278:240-247. doi: 10.1016/j.foodchem.2018.11.051. Epub 2018 Nov 10.

PMID:
30583368
8.

Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.

Zheng Y, Yang Y, Liu C, Chen L, Sheng J, Shen L.

J Agric Food Chem. 2015 Jun 10;63(22):5509-17. doi: 10.1021/acs.jafc.5b00437. Epub 2015 May 28.

PMID:
25910076
9.

Resistance to Botrytis cinerea in Solanum lycopersicoides involves widespread transcriptional reprogramming.

Smith JE, Mengesha B, Tang H, Mengiste T, Bluhm BH.

BMC Genomics. 2014 May 3;15:334. doi: 10.1186/1471-2164-15-334.

10.
11.

Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool.

Lecompte F, Nicot PC, Ripoll J, Abro MA, Raimbault AK, Lopez-Lauri F, Bertin N.

Ann Bot. 2017 Mar 1;119(5):931-943. doi: 10.1093/aob/mcw240.

12.

Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.

Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL.

Plant Physiol. 2009 Jul;150(3):1434-49. doi: 10.1104/pp.109.138701. Epub 2009 May 22.

13.

Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

Gao P, Qin J, Li D, Zhou S.

PLoS One. 2018 Jan 10;13(1):e0190932. doi: 10.1371/journal.pone.0190932. eCollection 2018.

14.
15.

Depression of Fungal Polygalacturonase Activity in Solanum lycopersicum Contributes to Antagonistic Yeast-Mediated Fruit Immunity to Botrytis.

Lu L, Ji L, Ma Q, Yang M, Li S, Tang Q, Qiao L, Li F, Guo Q, Wang C.

J Agric Food Chem. 2019 Mar 27;67(12):3293-3304. doi: 10.1021/acs.jafc.9b00031. Epub 2019 Mar 6.

PMID:
30785743
16.

Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea.

Scalschi L, Sanmartín M, Camañes G, Troncho P, Sánchez-Serrano JJ, García-Agustín P, Vicedo B.

Plant J. 2015 Jan;81(2):304-15. doi: 10.1111/tpj.12728. Epub 2014 Dec 22.

17.

Overexpression of the carbohydrate binding module from Solanum lycopersicum expansin 1 (Sl-EXP1) modifies tomato fruit firmness and Botrytis cinerea susceptibility.

Perini MA, Sin IN, Villarreal NM, Marina M, Powell AL, Martínez GA, Civello PM.

Plant Physiol Biochem. 2017 Apr;113:122-132. doi: 10.1016/j.plaphy.2017.01.029. Epub 2017 Feb 2.

PMID:
28196350
18.

Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Botrytis cinerea.

Ouyang Z, Liu S, Huang L, Hong Y, Li X, Huang L, Zhang Y, Zhang H, Li D, Song F.

Front Plant Sci. 2016 Dec 27;7:1964. doi: 10.3389/fpls.2016.01964. eCollection 2016.

19.

Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.

Liu B, Hong YB, Zhang YF, Li XH, Huang L, Zhang HJ, Li DY, Song FM.

Plant Sci. 2014 Oct;227:145-56. doi: 10.1016/j.plantsci.2014.08.001. Epub 2014 Aug 10.

PMID:
25219316
20.

Accumulation of anthocyanins in tomato skin extends shelf life.

Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C.

New Phytol. 2013 Nov;200(3):650-5. doi: 10.1111/nph.12524. Epub 2013 Sep 18.

Supplemental Content

Support Center