Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

An inexpensive microscopy system for microfluidic studies in budding yeast.

Chen KL, Ven TN, Crane MM, Chen DE, Feng YC, Suzuki N, Russell AE, de Moraes D, Kaeberlein M.

Transl Med Aging. 2019;3:52-56. doi: 10.1016/j.tma.2019.05.001. Epub 2019 Jun 7.

2.

Microfluidic technologies for yeast replicative lifespan studies.

Chen KL, Crane MM, Kaeberlein M.

Mech Ageing Dev. 2017 Jan;161(Pt B):262-269. doi: 10.1016/j.mad.2016.03.009. Epub 2016 Mar 23. Review.

3.

High-throughput analysis of yeast replicative aging using a microfluidic system.

Jo MC, Liu W, Gu L, Dang W, Qin L.

Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9364-9. doi: 10.1073/pnas.1510328112. Epub 2015 Jul 13.

4.

Microfluidic Platforms for Yeast-Based Aging Studies.

Jo MC, Qin L.

Small. 2016 Nov;12(42):5787-5801. doi: 10.1002/smll.201602006. Epub 2016 Sep 26.

5.

3D-printed microfluidic microdissector for high-throughput studies of cellular aging.

Spivey EC, Xhemalce B, Shear JB, Finkelstein IJ.

Anal Chem. 2014 Aug 5;86(15):7406-12. doi: 10.1021/ac500893a. Epub 2014 Jul 17.

6.

Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.

Pearce JM, Anzalone NC, Heldt CL.

J Lab Autom. 2016 Aug;21(4):510-6. doi: 10.1177/2211068215624408. Epub 2016 Jan 13.

PMID:
26763294
7.

Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.

Zou K, Ren DS, Ou-Yang Q, Li H, Zheng J.

J Vis Exp. 2017 Mar 30;(121). doi: 10.3791/55412.

8.

A Microfluidic Device for Massively Parallel, Whole-lifespan Imaging of Single Fission Yeast Cells.

Jones SK Jr, Spivey EC, Rybarski JR, Finkelstein IJ.

Bio Protoc. 2018 Apr 5;8(7). pii: e2783. doi: 10.21769/BioProtoc.2783.

9.

Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform.

Lee SS, Avalos Vizcarra I, Huberts DH, Lee LP, Heinemann M.

Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4916-20. doi: 10.1073/pnas.1113505109. Epub 2012 Mar 14.

10.

An aging-independent replicative lifespan in a symmetrically dividing eukaryote.

Spivey EC, Jones SK Jr, Rybarski JR, Saifuddin FA, Finkelstein IJ.

Elife. 2017 Jan 31;6. pii: e20340. doi: 10.7554/eLife.20340.

11.

Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

Schneidereit D, Kraus L, Meier JC, Friedrich O, Gilbert DF.

Biosens Bioelectron. 2017 Jun 15;92:472-481. doi: 10.1016/j.bios.2016.10.078. Epub 2016 Nov 2.

12.

The upcoming 3D-printing revolution in microfluidics.

Bhattacharjee N, Urrios A, Kang S, Folch A.

Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21. Review.

13.

An Open-Source, Programmable Pneumatic Setup for Operation and Automated Control of Single- and Multi-Layer Microfluidic Devices.

Brower K, Puccinelli R, Markin CJ, Shimko TC, Longwell SA, Cruz B, Gomez-Sjoberg R, Fordyce PM.

HardwareX. 2018 Apr;3:117-134. doi: 10.1016/j.ohx.2017.10.001. Epub 2017 Oct 31.

14.

"Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.

Milanovic JZ, Milanovic P, Kragic R, Kostic M.

PLoS One. 2018 Mar 6;13(3):e0193744. doi: 10.1371/journal.pone.0193744. eCollection 2018.

15.

Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

Zhang Y, Luo C, Zou K, Xie Z, Brandman O, Ouyang Q, Li H.

PLoS One. 2012;7(11):e48275. doi: 10.1371/journal.pone.0048275. Epub 2012 Nov 8.

16.

Accessing microfluidics through feature-based design software for 3D printing.

Shankles PG, Millet LJ, Aufrecht JA, Retterer ST.

PLoS One. 2018 Mar 29;13(3):e0192752. doi: 10.1371/journal.pone.0192752. eCollection 2018.

17.

Controller for microfluidic large-scale integration.

White JA, Streets AM.

HardwareX. 2018 Apr;3:135-145. doi: 10.1016/j.ohx.2017.10.002. Epub 2017 Oct 31.

18.

3D-printed microfluidic devices.

Amin R, Knowlton S, Hart A, Yenilmez B, Ghaderinezhad F, Katebifar S, Messina M, Khademhosseini A, Tasoglu S.

Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001. Review.

PMID:
27321137
19.

Pump-free multi-well-based microfluidic system for high-throughput analysis of size-control relative genes in budding yeast.

Kang X, Jiang L, Chen X, Yuan H, Luo C, Ouyang Q.

Integr Biol (Camb). 2014 Jul 24;6(7):685-93. doi: 10.1039/c4ib00054d. Epub 2014 May 29.

PMID:
24872017
20.

Construction and use of a microfluidic dissection platform for long-term imaging of cellular processes in budding yeast.

Huberts DH, Sik Lee S, Gonzáles J, Janssens GE, Vizcarra IA, Heinemann M.

Nat Protoc. 2013 Jun;8(6):1019-27. doi: 10.1038/nprot.2013.060. Epub 2013 May 2.

PMID:
23640166

Supplemental Content

Support Center