Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Identification of transcriptome-wide, nut weight-associated SNPs in Castanea crenata.

Kang MJ, Shin AY, Shin Y, Lee SA, Lee HR, Kim TD, Choi M, Koo N, Kim YM, Kyeong D, Subramaniyam S, Park EJ.

Sci Rep. 2019 Sep 11;9(1):13161. doi: 10.1038/s41598-019-49618-8.

2.

Construction of a SNP-Based High-Density Genetic Map Using Genotyping by Sequencing (GBS) and QTL Analysis of Nut Traits in Chinese Chestnut (Castanea mollissima Blume).

Ji F, Wei W, Liu Y, Wang G, Zhang Q, Xing Y, Zhang S, Liu Z, Cao Q, Qin L.

Front Plant Sci. 2018 Jun 14;9:816. doi: 10.3389/fpls.2018.00816. eCollection 2018.

3.

Signatures of Selection in the Genomes of Chinese Chestnut (Castanea mollissima Blume): The Roots of Nut Tree Domestication.

LaBonte NR, Zhao P, Woeste K.

Front Plant Sci. 2018 Jun 25;9:810. doi: 10.3389/fpls.2018.00810. eCollection 2018.

4.

Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.

Nguyen TT, Huang J, Wu Q, Nguyen T, Li M.

BMC Genomics. 2015;16 Suppl 2:S5. doi: 10.1186/1471-2164-16-S2-S5. Epub 2015 Jan 21.

5.

First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi.

Santos C, Nelson CD, Zhebentyayeva T, Machado H, Gomes-Laranjo J, Costa RL.

PLoS One. 2017 Sep 7;12(9):e0184381. doi: 10.1371/journal.pone.0184381. eCollection 2017.

6.

Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle.

Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, Plastow G, Stothard P, Nayeri S, Schenkel FS.

Genet Sel Evol. 2017 Nov 7;49(1):82. doi: 10.1186/s12711-017-0356-8.

7.

Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.

Wang HY, Chang SC, Lin WY, Chen CH, Chiang SH, Huang KY, Chu BY, Lu JJ, Lee TY.

J Comput Biol. 2018 Dec;25(12):1347-1360. doi: 10.1089/cmb.2018.0002. Epub 2018 Sep 8.

PMID:
30204480
8.

Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection.

Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, Powell WA, Wheeler N, Sederoff R, Carlson JE.

BMC Plant Biol. 2009 May 9;9:51. doi: 10.1186/1471-2229-9-51.

9.

Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture.

Ni G, Cavero D, Fangmann A, Erbe M, Simianer H.

Genet Sel Evol. 2017 Jan 16;49(1):8. doi: 10.1186/s12711-016-0277-y.

10.

Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods.

Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y.

Front Genet. 2018 Jul 4;9:237. doi: 10.3389/fgene.2018.00237. eCollection 2018.

11.

Chestnut Breeding in the United States for Disease and Insect Resistance.

Anagnostakis SL.

Plant Dis. 2012 Oct;96(10):1392-1403. doi: 10.1094/PDIS-04-12-0350-FE.

PMID:
30727322
12.

Transcriptome analysis of the gill of Takifugu rubripes using Illumina sequencing for discovery of SNPs.

Cui J, Wang H, Liu S, Qiu X, Jiang Z, Wang X.

Comp Biochem Physiol Part D Genomics Proteomics. 2014 Jun;10:44-51. doi: 10.1016/j.cbd.2014.03.001. Epub 2014 Mar 27.

PMID:
24747987
13.

Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing.

Djari A, Esquerré D, Weiss B, Martins F, Meersseman C, Boussaha M, Klopp C, Rocha D.

BMC Genomics. 2013 May 7;14:307. doi: 10.1186/1471-2164-14-307.

14.

Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

Pareek CS, Smoczyński R, Kadarmideen HN, Dziuba P, Błaszczyk P, Sikora M, Walendzik P, Grzybowski T, Pierzchała M, Horbańczuk J, Szostak A, Ogluszka M, Zwierzchowski L, Czarnik U, Fraser L, Sobiech P, Wąsowicz K, Gelfand B, Feng Y, Kumar D.

PLoS One. 2016 Sep 8;11(9):e0161370. doi: 10.1371/journal.pone.0161370. eCollection 2016.

15.

Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons.

Chen L, Lu D, Wang T, Li Z, Zhao Y, Jiang Y, Zhang Q, Cao Q, Fang K, Xing Y, Qin L.

PLoS One. 2017 May 23;12(5):e0177792. doi: 10.1371/journal.pone.0177792. eCollection 2017.

16.

Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction.

López B, Torrent-Fontbona F, Viñas R, Fernández-Real JM.

Artif Intell Med. 2018 Apr;85:43-49. doi: 10.1016/j.artmed.2017.09.005. Epub 2017 Sep 22.

PMID:
28943335
17.
18.

A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.

Hu Y, Hase T, Li HP, Prabhakar S, Kitano H, Ng SK, Ghosh S, Wee LJ.

BMC Genomics. 2016 Dec 22;17(Suppl 13):1025. doi: 10.1186/s12864-016-3317-7.

19.

Identification and characterization of water chestnut Soymovirus-1 (WCSV-1), a novel Soymovirus in water chestnuts (Eleocharis dulcis).

Zhang F, Yang Z, Hong N, Wang G, Wang A, Wang L.

BMC Plant Biol. 2019 Apr 25;19(1):159. doi: 10.1186/s12870-019-1761-7.

20.

Transcriptomic identification and expression of starch and sucrose metabolism genes in the seeds of Chinese chestnut (Castanea mollissima).

Zhang L, Lin Q, Feng Y, Fan X, Zou F, Yuan DY, Zeng X, Cao H.

J Agric Food Chem. 2015 Jan 28;63(3):929-42. doi: 10.1021/jf505247d. Epub 2015 Jan 13.

PMID:
25537355

Supplemental Content

Support Center