Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Erratum: Diseleno[3,2-b:2',3'-d]selenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors.

Jang SY, Kim IB, Kang M, Fei Z, Jung E, McCarthy-Ward T, Shaw J, Lim DH, Kim YJ, Mathur S, Heeney M, Kim DY.

Adv Sci (Weinh). 2019 Sep 4;6(17):1901978. doi: 10.1002/advs.201901978. eCollection 2019 Sep 4.

2.

Diseleno[3,2-b:2',3'-d]selenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors.

Jang SY, Kim IB, Kang M, Fei Z, Jung E, McCarthy-Ward T, Shaw J, Lim DH, Kim YJ, Mathur S, Heeney M, Kim DY.

Adv Sci (Weinh). 2019 Apr 26;6(13):1900245. doi: 10.1002/advs.201900245. eCollection 2019 Jul 3. Erratum in: Adv Sci (Weinh). 2019 Sep 04;6(17):1901978.

3.

Diseleno[2,3-b:3',2'-d]selenophene and Diseleno[2,3-b:3',2'-d] thiophene: Building Blocks for the Construction of [7]Helicenes.

Xu W, Wu L, Fang M, Ma Z, Shan Z, Li C, Wang H.

J Org Chem. 2017 Oct 20;82(20):11192-11197. doi: 10.1021/acs.joc.7b01362. Epub 2017 Oct 6.

PMID:
28952725
4.

Difluorobenzothiadiazole and Selenophene-Based Conjugated Polymer Demonstrating an Effective Hole Mobility Exceeding 5 cm2 V-1 s-1 with Solid-State Electrolyte Dielectric.

Nketia-Yawson B, Jung AR, Nguyen HD, Lee KK, Kim B, Noh YY.

ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32492-32500. doi: 10.1021/acsami.8b14176. Epub 2018 Sep 13.

PMID:
30129359
5.

Selenophene-Based Heteroacenes: Synthesis, Structures, and Physicochemical Behaviors.

Xu W, Wang M, Ma Z, Shan Z, Li C, Wang H.

J Org Chem. 2018 Oct 5;83(19):12154-12163. doi: 10.1021/acs.joc.8b02107. Epub 2018 Sep 14.

PMID:
30173515
6.

Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility.

Park KH, Cheon KH, Lee YJ, Chung DS, Kwon SK, Kim YH.

Chem Commun (Camb). 2015 May 11;51(38):8120-2. doi: 10.1039/c5cc02104a. Epub 2015 Apr 14.

PMID:
25871952
7.

Naphthobisthiadiazole-Based Selenophene-Incorporated Quarterchalcogenophene Copolymers for Field-Effect Transistors and Polymer Solar Cells.

Cao FY, Lin FY, Tseng CC, Hung KE, Hsu JY, Su YC, Cheng YJ.

ACS Appl Mater Interfaces. 2019 Mar 27;11(12):11674-11683. doi: 10.1021/acsami.9b00083. Epub 2019 Mar 18.

PMID:
30816049
8.

2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes: a new class of high-performance semiconductors for organic field-effect transistors.

Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T.

J Am Chem Soc. 2004 Apr 28;126(16):5084-5.

PMID:
15099088
9.

A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors.

Nketia-Yawson B, Lee HS, Seo D, Yoon Y, Park WT, Kwak K, Son HJ, Kim B, Noh YY.

Adv Mater. 2015 May 20;27(19):3045-52. doi: 10.1002/adma.201500233. Epub 2015 Apr 9.

PMID:
25858049
10.

Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors.

Kang I, An TK, Hong JA, Yun HJ, Kim R, Chung DS, Park CE, Kim YH, Kwon SK.

Adv Mater. 2013 Jan 25;25(4):524-8. doi: 10.1002/adma.201202867. Epub 2012 Nov 2.

PMID:
23125035
11.

Synthesis and Characterization of a Soluble A-D-A Molecule Containing a 2D Conjugated Selenophene-Based Side Group for Organic Solar Cells.

Shin Y, Song CE, Lee WH, Lee SK, Shin WS, Kang IN.

Macromol Rapid Commun. 2017 Jun;38(11). doi: 10.1002/marc.201700016. Epub 2017 Mar 21.

PMID:
28321949
12.

High electron mobility in ladder polymer field-effect transistors.

Babel A, Jenekhe SA.

J Am Chem Soc. 2003 Nov 12;125(45):13656-7.

PMID:
14599192
13.

Simple Solvent Engineering for High-Mobility and Thermally Robust Conjugated Polymer Nanowire Field-Effect Transistors.

Jeon GG, Lee M, Nam J, Park W, Yang M, Choi JH, Yoon DK, Lee E, Kim B, Kim JH.

ACS Appl Mater Interfaces. 2018 Sep 5;10(35):29824-29830. doi: 10.1021/acsami.8b07643. Epub 2018 Aug 23.

PMID:
30088908
14.

Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene-vinylene copolymers.

Al-Hashimi M, Han Y, Smith J, Bazzi HS, Alqaradawi SYA, Watkins SE, Anthopoulos TD, Heeney M.

Chem Sci. 2016 Feb 1;7(2):1093-1099. doi: 10.1039/c5sc03501e. Epub 2015 Nov 2.

15.

High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors.

Um HA, Lee DH, Heo DU, Yang DS, Shin J, Baik H, Cho MJ, Choi DH.

ACS Nano. 2015 May 26;9(5):5264-74. doi: 10.1021/acsnano.5b01982. Epub 2015 May 13.

PMID:
25961419
16.

A Pseudo-Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A High-Mobility Organic Transistor in Nonchlorinated Solvents.

Choi HH, Baek JY, Song E, Kang B, Cho K, Kwon SK, Kim YH.

Adv Mater. 2015 Jun 24;27(24):3626-31. doi: 10.1002/adma.201500335. Epub 2015 May 5.

PMID:
25944387
17.

A Novel Alkylated Indacenodithieno[3,2-b]thiophene-Based Polymer for High-Performance Field-Effect Transistors.

Zhang W, Han Y, Zhu X, Fei Z, Feng Y, Treat ND, Faber H, Stingelin N, McCulloch I, Anthopoulos TD, Heeney M.

Adv Mater. 2016 May;28(20):3922-7. doi: 10.1002/adma.201504092. Epub 2015 Oct 30.

18.

High-Performance Organic Field-Effect Transistors Fabricated Based on a Novel Ternary π-Conjugated Copolymer.

Zhong W, Sun S, Ying L, Liu F, Lan L, Huang F, Cao Y.

ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7315-7321. doi: 10.1021/acsami.6b13673. Epub 2017 Feb 13.

PMID:
28139913
19.

Macroscopic Alignment of One-Dimensional Conjugated Polymer Nanocrystallites for High-Mobility Organic Field-Effect Transistors.

Chang M, Choi D, Egap E.

ACS Appl Mater Interfaces. 2016 Jun 1;8(21):13484-91. doi: 10.1021/acsami.6b02216. Epub 2016 May 18.

PMID:
27191819
20.

Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

Li M, An C, Pisula W, Müllen K.

Acc Chem Res. 2018 May 15;51(5):1196-1205. doi: 10.1021/acs.accounts.8b00025. Epub 2018 Apr 17.

PMID:
29664608

Supplemental Content

Support Center