Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Efficient Red/Near-Infrared-Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence.

Liu KK, Song SY, Sui LZ, Wu SX, Jing PT, Wang RQ, Li QY, Wu GR, Zhang ZZ, Yuan KJ, Shan CX.

Adv Sci (Weinh). 2019 Jul 15;6(17):1900766. doi: 10.1002/advs.201900766. eCollection 2019 Sep 4.

2.

Deep-Ultraviolet Emissive Carbon Nanodots.

Song SY, Liu KK, Wei JY, Lou Q, Shang Y, Shan CX.

Nano Lett. 2019 Aug 14;19(8):5553-5561. doi: 10.1021/acs.nanolett.9b02093. Epub 2019 Jul 9.

PMID:
31276414
3.

Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots.

Li D, Jing P, Sun L, An Y, Shan X, Lu X, Zhou D, Han D, Shen D, Zhai Y, Qu S, Zbořil R, Rogach AL.

Adv Mater. 2018 Mar;30(13):e1705913. doi: 10.1002/adma.201705913. Epub 2018 Feb 7.

PMID:
29411443
4.

Near-infrared emissive carbon dots for two-photon fluorescence bioimaging.

Pan L, Sun S, Zhang L, Jiang K, Lin H.

Nanoscale. 2016 Oct 6;8(39):17350-17356.

PMID:
27714173
5.

Near-infrared excited cooperative upconversion in luminescent Ytterbium(ΙΙΙ) bioprobes as light-responsive theranostic agents.

Dasari S, Singh S, Kumar P, Sivakumar S, Patra AK.

Eur J Med Chem. 2019 Feb 1;163:546-559. doi: 10.1016/j.ejmech.2018.12.010. Epub 2018 Dec 5.

PMID:
30553145
6.

Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots.

Wang B, Mu Y, Yin H, Yang Z, Shi Y, Li J.

Nanoscale. 2018 Jun 14;10(22):10650-10656. doi: 10.1039/c8nr02043d. Epub 2018 May 30.

PMID:
29845155
7.

Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence.

Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B.

Adv Mater. 2017 Apr;29(15). doi: 10.1002/adma.201603443. Epub 2017 Feb 13.

PMID:
28195369
8.

On the upconversion fluorescence in carbon nanodots and graphene quantum dots.

Wen X, Yu P, Toh YR, Ma X, Tang J.

Chem Commun (Camb). 2014 May 11;50(36):4703-6. doi: 10.1039/c4cc01213e.

PMID:
24675809
9.

Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye.

Jahan S, Mansoor F, Naz S, Lei J, Kanwal S.

Anal Chem. 2013 Nov 5;85(21):10232-9. doi: 10.1021/ac401949k. Epub 2013 Oct 17.

PMID:
24083490
10.

Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging.

Mao QX, E S, Xia JM, Song RS, Shu Y, Chen XW, Wang JH.

Langmuir. 2016 Nov 22;32(46):12221-12229. Epub 2016 Nov 11.

PMID:
27805819
11.

Upconverting Carbon Nanodots from Ethylenediaminetetraacetic Acid (EDTA) as Near-Infrared Activated Phototheranostic Agents.

Ortega-Liebana MC, Encabo-Berzosa MM, Casanova A, Pereboom MD, Alda JO, Hueso JL, Santamaria J.

Chemistry. 2019 Apr 11;25(21):5539-5546. doi: 10.1002/chem.201806307. Epub 2019 Mar 20.

PMID:
30741455
12.

One-pot green hydrothermal synthesis of fluorescent nitrogen-doped carbon nanodots for in vivo bioimaging.

Kuo TR, Sung SY, Hsu CW, Chang CJ, Chiu TC, Hu CC.

Anal Bioanal Chem. 2016 Jan;408(1):77-82. doi: 10.1007/s00216-015-9138-8. Epub 2015 Oct 29.

PMID:
26514673
13.

Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion.

Li D, Han D, Qu SN, Liu L, Jing PT, Zhou D, Ji WY, Wang XY, Zhang TF, Shen DZ.

Light Sci Appl. 2016 Jul 1;5(7):e16120. doi: 10.1038/lsa.2016.120. eCollection 2016 Jul.

14.

One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis.

Liu J, Lu S, Tang Q, Zhang K, Yu W, Sun H, Yang B.

Nanoscale. 2017 Jun 1;9(21):7135-7142. doi: 10.1039/c7nr02128c.

PMID:
28513713
15.

Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging.

Wang Y, Hu R, Xi W, Cai F, Wang S, Zhu Z, Bai R, Qian J.

Biomed Opt Express. 2015 Sep 3;6(10):3783-94. doi: 10.1364/BOE.6.003783. eCollection 2015 Oct 1.

16.

Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window.

Lv Y, Liu P, Ding H, Wu Y, Yan Y, Liu H, Wang X, Huang F, Zhao Y, Tian Z.

ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20640-8. doi: 10.1021/acsami.5b05150. Epub 2015 Sep 15.

PMID:
26340609
17.

Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots.

Yang P, Zhao J, Zhang L, Li L, Zhu Z.

Chemistry. 2015 Jun 1;21(23):8561-8. doi: 10.1002/chem.201405088. Epub 2015 Apr 29.

PMID:
25925432
18.

Near-Infrared Excited Orthogonal Emissive Upconversion Nanoparticles for Imaging-Guided On-Demand Therapy.

Tang M, Zhu X, Zhang Y, Zhang Z, Zhang Z, Mei Q, Zhang J, Wu M, Liu J, Zhang Y.

ACS Nano. 2019 Sep 24;13(9):10405-10418. doi: 10.1021/acsnano.9b04200. Epub 2019 Aug 26.

PMID:
31448898
19.

A near-infrared I emissive dye: toward the application of saturable absorber and multiphoton fluorescence microscopy in the deep-tissue imaging window.

Ren C, Deng X, Hu W, Li J, Miao X, Xiao S, Liu H, Fan Q, Wang K, He T.

Chem Commun (Camb). 2019 Apr 25;55(35):5111-5114. doi: 10.1039/c9cc02120e.

PMID:
30968905
20.

In Vivo Tumor Photoacoustic Imaging and Photothermal Therapy Based on Supra-(Carbon Nanodots).

Xu G, Bao X, Chen J, Zhang B, Li D, Zhou D, Wang X, Liu C, Wang Y, Qu S.

Adv Healthc Mater. 2019 Jan;8(2):e1800995. doi: 10.1002/adhm.201800995. Epub 2018 Nov 26.

PMID:
30474227

Supplemental Content

Support Center