Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Mn and S dual-doping of MOF-derived Co3O4 electrode array increases the efficiency of electrocatalytic generation of oxygen.

Qi J, Wang H, Lin J, Li C, Si X, Cao J, Zhong Z, Feng J.

J Colloid Interface Sci. 2019 Sep 4;557:28-33. doi: 10.1016/j.jcis.2019.09.009. [Epub ahead of print]

PMID:
31505335
2.

N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts.

Xu L, Wang Z, Wang J, Xiao Z, Huang X, Liu Z, Wang S.

Nanotechnology. 2017 Apr 21;28(16):165402. doi: 10.1088/1361-6528/aa6381. Epub 2017 Mar 20.

PMID:
28319036
3.

Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction.

Li Q, Wang X, Tang K, Wang M, Wang C, Yan C.

ACS Nano. 2017 Dec 26;11(12):12230-12239. doi: 10.1021/acsnano.7b05606. Epub 2017 Nov 29.

PMID:
29178777
4.

Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions.

Xu G, Xu GC, Ban JJ, Zhang L, Lin H, Qi CL, Sun ZP, Jia DZ.

J Colloid Interface Sci. 2018 Jul 1;521:141-149. doi: 10.1016/j.jcis.2018.03.036. Epub 2018 Mar 13.

PMID:
29567602
5.

Arousing the Reactive Fe Sites in Pyrite (FeS2) via Integration of Electronic Structure Reconfiguration and in Situ Electrochemical Topotactic Transformation for Highly Efficient Oxygen Evolution Reaction.

Tan Z, Sharma L, Kakkar R, Meng T, Jiang Y, Cao M.

Inorg Chem. 2019 Jun 3;58(11):7615-7627. doi: 10.1021/acs.inorgchem.9b01017. Epub 2019 May 10.

PMID:
31074996
6.

Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting.

Tang T, Jiang WJ, Niu S, Liu N, Luo H, Chen YY, Jin SF, Gao F, Wan LJ, Hu JS.

J Am Chem Soc. 2017 Jun 21;139(24):8320-8328. doi: 10.1021/jacs.7b03507. Epub 2017 Jun 13.

PMID:
28535047
7.

Black Phosphorus-Modified Co3O4 through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction.

Shi F, Huang K, Wang Y, Zhang W, Li L, Wang X, Feng S.

ACS Appl Mater Interfaces. 2019 May 15;11(19):17459-17466. doi: 10.1021/acsami.9b04078. Epub 2019 May 6.

PMID:
31021071
8.

Co3O4-x-Carbon@Fe2-yCoyO3 Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction.

Xu W, Xie W, Wang Y.

ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28642-28649. doi: 10.1021/acsami.7b09213. Epub 2017 Aug 16.

PMID:
28783430
9.

Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

Zhu YP, Guo C, Zheng Y, Qiao SZ.

Acc Chem Res. 2017 Apr 18;50(4):915-923. doi: 10.1021/acs.accounts.6b00635. Epub 2017 Feb 16.

PMID:
28205437
10.

CoC2O4ยท2H2O derived Co3O4 nanorods array: a high-efficiency 1D electrocatalyst for alkaline oxygen evolution reaction.

Wei Y, Ren X, Ma H, Sun X, Zhang Y, Kuang X, Yan T, Ju H, Wu D, Wei Q.

Chem Commun (Camb). 2018 Feb 6;54(12):1533-1536. doi: 10.1039/c7cc08423d.

PMID:
29367979
11.

Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts.

Kim TW, Woo MA, Regis M, Choi KS.

J Phys Chem Lett. 2014 Jul 3;5(13):2370-4. doi: 10.1021/jz501077u. Epub 2014 Jun 24.

PMID:
26279561
12.

Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.

Tang C, Wang HF, Zhang Q.

Acc Chem Res. 2018 Apr 17;51(4):881-889. doi: 10.1021/acs.accounts.7b00616. Epub 2018 Jan 31.

PMID:
29384364
13.

Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.

Song W, Ren Z, Chen SY, Meng Y, Biswas S, Nandi P, Elsen HA, Gao PX, Suib SL.

ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20802-13. doi: 10.1021/acsami.6b06103. Epub 2016 Aug 5.

PMID:
27458646
14.
15.

Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co3O4@NiFe LDH Catalysts for Zn-Air Batteries: Effects of Interfacial Cation Valences.

Guo X, Hu X, Wu D, Jing C, Liu W, Ren Z, Zhao Q, Jiang X, Xu C, Zhang Y, Hu N.

ACS Appl Mater Interfaces. 2019 Jun 19;11(24):21506-21514. doi: 10.1021/acsami.9b04217. Epub 2019 Jun 5.

PMID:
31124648
16.

Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation.

Liu W, Hou Y, Lin Z, Yang S, Yu C, Lei C, Wu X, He D, Jia Q, Zheng G, Zhang X, Lei L.

ChemSusChem. 2018 May 9;11(9):1479-1485. doi: 10.1002/cssc.201800380. Epub 2018 Apr 18.

PMID:
29575748
17.

Promoting Oxygen Evolution Reaction of Co-Based Catalysts (Co3 O4 , CoS, CoP, and CoN) through Photothermal Effect.

Jin B, Li Y, Wang J, Meng F, Cao S, He B, Jia S, Wang Y, Li Z, Liu X.

Small. 2019 Sep 11:e1903847. doi: 10.1002/smll.201903847. [Epub ahead of print]

PMID:
31512397
18.

Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential.

Zheng F, Zhang Z, Xiang D, Li P, Du C, Zhuang Z, Li X, Chen W.

J Colloid Interface Sci. 2019 Nov 1;555:541-547. doi: 10.1016/j.jcis.2019.08.005. Epub 2019 Aug 2.

PMID:
31404838
19.

Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction.

Wei R, Bu X, Gao W, Villaos RAB, Macam G, Huang ZQ, Lan C, Chuang FC, Qu Y, Ho JC.

ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33012-33021. doi: 10.1021/acsami.9b10868. Epub 2019 Aug 29.

PMID:
31414595
20.

Morphology and electronic structure modulation induced by fluorine doping in nickel-based heterostructures for robust bifunctional electrocatalysis.

Hao P, Zhu W, Lei F, Ma X, Xie J, Tan H, Li L, Liu H, Tang B.

Nanoscale. 2018 Nov 8;10(43):20384-20392. doi: 10.1039/c8nr06756b.

PMID:
30376026

Supplemental Content

Support Center