Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Synchronization in starlike networks of phase oscillators.

Xu C, Gao J, Boccaletti S, Zheng Z, Guan S.

Phys Rev E. 2019 Jul;100(1-1):012212. doi: 10.1103/PhysRevE.100.012212.

PMID:
31499803
2.

Perturbation analysis of complete synchronization in networks of phase oscillators.

Tönjes R, Blasius B.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026202. Epub 2009 Aug 10.

PMID:
19792226
3.

Explosive synchronization coexists with classical synchronization in the Kuramoto model.

Danziger MM, Moskalenko OI, Kurkin SA, Zhang X, Havlin S, Boccaletti S.

Chaos. 2016 Jun;26(6):065307. doi: 10.1063/1.4953345.

PMID:
27369869
4.

Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.

Wu H, Kang L, Liu Z, Dhamala M.

Sci Rep. 2018 Oct 19;8(1):15521. doi: 10.1038/s41598-018-33845-6.

5.

Bifurcations in the Kuramoto model on graphs.

Chiba H, Medvedev GS, Mizuhara MS.

Chaos. 2018 Jul;28(7):073109. doi: 10.1063/1.5039609.

PMID:
30070519
6.

Fading of remote synchronization in tree networks of Stuart-Landau oscillators.

Karakaya B, Minati L, Gambuzza LV, Frasca M.

Phys Rev E. 2019 May;99(5-1):052301. doi: 10.1103/PhysRevE.99.052301.

PMID:
31212500
7.

Explosive or Continuous: Incoherent state determines the route to synchronization.

Xu C, Gao J, Sun Y, Huang X, Zheng Z.

Sci Rep. 2015 Jul 10;5:12039. doi: 10.1038/srep12039.

8.

Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.

Papadopoulos L, Kim JZ, Kurths J, Bassett DS.

Chaos. 2017 Jul;27(7):073115. doi: 10.1063/1.4994819.

9.

Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks.

Cao L, Tian C, Wang Z, Zhang X, Liu Z.

Phys Rev E. 2018 Feb;97(2-1):022220. doi: 10.1103/PhysRevE.97.022220.

PMID:
29548119
10.

Approximate solution for frequency synchronization in a finite-size Kuramoto model.

Wang C, Rubido N, Grebogi C, Baptista MS.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062808. doi: 10.1103/PhysRevE.92.062808. Epub 2015 Dec 8.

PMID:
26764745
11.

Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators.

Ha SY, Lee J, Li Z.

Chaos. 2018 Nov;28(11):113112. doi: 10.1063/1.5047392.

PMID:
30501218
12.
13.

Synchronization properties of network motifs: influence of coupling delay and symmetry.

D'Huys O, Vicente R, Erneux T, Danckaert J, Fischer I.

Chaos. 2008 Sep;18(3):037116. doi: 10.1063/1.2953582.

PMID:
19045490
14.

Kuramoto dynamics in Hamiltonian systems.

Witthaut D, Timme M.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032917. Epub 2014 Sep 19.

PMID:
25314514
15.

Synchronization in Kuramoto Oscillator Networks With Sampled-Data Updating Law.

Wei B, Xiao F, Shi Y.

IEEE Trans Cybern. 2019 Oct 2. doi: 10.1109/TCYB.2019.2940987. [Epub ahead of print]

PMID:
31581106
16.

Synchronizability determined by coupling strengths and topology on complex networks.

Gómez-Gardeñes J, Moreno Y, Arenas A.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 2):066106. Epub 2007 Jun 22.

PMID:
17677324
17.

Onset of synchronization in weighted scale-free networks.

Wang WX, Huang L, Lai YC, Chen G.

Chaos. 2009 Mar;19(1):013134. doi: 10.1063/1.3087420.

PMID:
19334998
18.

Dynamics of phase oscillators with generalized frequency-weighted coupling.

Xu C, Gao J, Xiang H, Jia W, Guan S, Zheng Z.

Phys Rev E. 2016 Dec;94(6-1):062204. doi: 10.1103/PhysRevE.94.062204. Epub 2016 Dec 6.

PMID:
28085426
19.

Driven synchronization in random networks of oscillators.

Hindes J, Myers CR.

Chaos. 2015 Jul;25(7):073119. doi: 10.1063/1.4927292.

PMID:
26232970
20.

Synchronization of phase oscillators with frequency-weighted coupling.

Xu C, Sun Y, Gao J, Qiu T, Zheng Z, Guan S.

Sci Rep. 2016 Feb 23;6:21926. doi: 10.1038/srep21926.

Supplemental Content

Support Center