Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Enhanced osmoregulatory ability marks the smoltification period in developing chum salmon (Oncorhynchus keta).

Wong MK, Nobata S, Hyodo S.

Comp Biochem Physiol A Mol Integr Physiol. 2019 Sep 4;238:110565. doi: 10.1016/j.cbpa.2019.110565. [Epub ahead of print]

PMID:
31493553
2.

Water balance trumps ion balance for early marine survival of juvenile pink salmon (Oncorhynchus gorbuscha).

Sackville M, Wilson JM, Farrell AP, Brauner CJ.

J Comp Physiol B. 2012 Aug;182(6):781-92. doi: 10.1007/s00360-012-0660-0. Epub 2012 Apr 1.

PMID:
22466615
3.

Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar.

Nilsen TO, Ebbesson LO, Madsen SS, McCormick SD, Andersson E, Björnsson BT, Prunet P, Stefansson SO.

J Exp Biol. 2007 Aug;210(Pt 16):2885-96.

4.

Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma calcium regulation, osmoregulation, and calcitonin.

Björnsson BT, Young G, Lin RJ, Deftos LJ, Bern HA.

Gen Comp Endocrinol. 1989 Jun;74(3):346-54.

PMID:
2545513
5.

Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar.

Sundh H, Nilsen TO, Lindström J, Hasselberg-Frank L, Stefansson SO, McCormick SD, Sundell K.

J Fish Biol. 2014 Oct;85(4):1227-52. doi: 10.1111/jfb.12531.

PMID:
25263190
6.

The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity.

Moorman BP, Inokuchi M, Yamaguchi Y, Lerner DT, Grau EG, Seale AP.

Gen Comp Endocrinol. 2014 Oct 1;207:94-102. doi: 10.1016/j.ygcen.2014.03.013. Epub 2014 Mar 27.

PMID:
24681189
7.

Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway.

Kiilerich P, Kristiansen K, Madsen SS.

J Endocrinol. 2007 Aug;194(2):417-27.

PMID:
17641289
8.

Effects of acidic water and aluminum exposure on gill Na(+), K(+)-ATPase alpha-subunit isoforms, enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.).

Nilsen TO, Ebbesson LO, Kverneland OG, Kroglund F, Finstad B, Stefansson SO.

Aquat Toxicol. 2010 May 5;97(3):250-9. doi: 10.1016/j.aquatox.2009.12.001. Epub 2009 Dec 4.

PMID:
20079944
9.

Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure.

Breves JP, Fujimoto CK, Phipps-Costin SK, Einarsdottir IE, Björnsson BT, McCormick SD.

BMC Physiol. 2017 Jan 18;17(1):2. doi: 10.1186/s12899-017-0028-5.

11.

The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity.

Moorman BP, Lerner DT, Grau EG, Seale AP.

J Exp Biol. 2015 Mar;218(Pt 5):731-9. doi: 10.1242/jeb.112664. Epub 2015 Jan 23.

12.

Assessment of the timing and degree of smolt development in southern populations of masu salmon Oncorhynchus masou.

Inatani Y, Ineno T, Sone S, Matsumoto N, Uchida K, Shimizu M.

J Fish Biol. 2018 Sep;93(3):490-500. doi: 10.1111/jfb.13647.

13.

Functional classification of gill ionocytes and spatiotemporal changes in their distribution after transfer from seawater to freshwater in Japanese seabass.

Inokuchi M, Nakamura M, Miyanishi H, Hiroi J, Kaneko T.

J Exp Biol. 2017 Dec 15;220(Pt 24):4720-4732. doi: 10.1242/jeb.167320. Epub 2017 Oct 30.

14.

Effects of short-term acid and aluminum exposure on the parr-smolt transformation in Atlantic salmon (Salmo salar): disruption of seawater tolerance and endocrine status.

Monette MY, Björnsson BT, McCormick SD.

Gen Comp Endocrinol. 2008 Aug;158(1):122-30. doi: 10.1016/j.ygcen.2008.05.014. Epub 2008 May 29. Erratum in: Gen Comp Endocrinol. 2009 Jan 1;160(1):109.

PMID:
18606407
15.

Dietary lipid composition affects the gene expression of gill Na(+)/K (+)-ATPase alpha1b but not the alpha1a isoform in juvenile fall chinook salmon (Oncorhynchus tshawytscha).

Grant AA, Higgs DA, Brauner CJ, Schulte PM.

J Comp Physiol B. 2010 Jan;180(1):141-9. doi: 10.1007/s00360-009-0394-9. Epub 2009 Aug 8.

PMID:
19669152
16.
17.

Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters.

Chandrasekar S, Nich T, Tripathi G, Sahu NP, Pal AK, Dasgupta S.

Fish Physiol Biochem. 2014 Jun;40(3):983-96. doi: 10.1007/s10695-013-9899-y. Epub 2014 Jan 31.

PMID:
24482094
18.

Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).

Taniyama N, Kaneko N, Inatani Y, Miyakoshi Y, Shimizu M.

Gen Comp Endocrinol. 2016 Sep 15;236:146-156. doi: 10.1016/j.ygcen.2016.07.020. Epub 2016 Jul 18.

19.

Dynamics of Na(+),K(+),2Cl(-) cotransporter and Na(+),K(+)-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar).

Tipsmark CK, Madsen SS, Seidelin M, Christensen AS, Cutler CP, Cramb G.

J Exp Zool. 2002 Jul 1;293(2):106-18.

PMID:
12115907
20.

Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach.

Sucré E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P.

J Comp Physiol B. 2013 Jan;183(1):83-97. doi: 10.1007/s00360-012-0687-2. Epub 2012 Jul 1.

PMID:
22752053

Supplemental Content

Support Center