Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

High Sensitivity NO₂ Gas Sensor Based on 3D WO₃ Microflowers Assembled by Numerous Nanoplates.

Cao PJ, Li M, Rao CN, Han S, Xu WY, Fang M, Liu XK, Zeng YX, Liu WJ, Zhu DL, Lu YM.

J Nanosci Nanotechnol. 2020 Mar 1;20(3):1790-1798. doi: 10.1166/jnn.2020.17175.

PMID:
31492344
2.

High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.

Jiang Z, Chen W, Jin L, Cui F, Song Z, Zhu C.

Nanomaterials (Basel). 2018 Nov 5;8(11). pii: E909. doi: 10.3390/nano8110909.

3.

Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates.

Xue D, Wang Y, Cao J, Sun G, Zhang Z.

Talanta. 2019 Jul 1;199:603-611. doi: 10.1016/j.talanta.2019.03.014. Epub 2019 Mar 2.

PMID:
30952304
4.

Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing.

Wongchoosuk C, Wisitsoraat A, Phokharatkul D, Tuantranont A, Kerdcharoen T.

Sensors (Basel). 2010;10(8):7705-15. doi: 10.3390/s100807705. Epub 2010 Aug 17.

5.

Porous tungsten oxide nanoflakes for highly alcohol sensitive performance.

Xiao J, Liu P, Liang Y, Li HB, Yang GW.

Nanoscale. 2012 Nov 21;4(22):7078-83. doi: 10.1039/c2nr32078a.

PMID:
23069859
6.

Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection.

Gao H, Yu Q, Chen K, Sun P, Liu F, Yan X, Liu F, Lu G.

J Colloid Interface Sci. 2019 Feb 1;535:458-468. doi: 10.1016/j.jcis.2018.10.010. Epub 2018 Oct 6.

PMID:
30321781
7.

Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness.

Ganbavle VV, Mohite SV, Agawane GL, Kim JH, Rajpure KY.

J Colloid Interface Sci. 2015 Aug 1;451:245-54. doi: 10.1016/j.jcis.2015.04.001. Epub 2015 Apr 7.

PMID:
25898119
8.

Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature.

Yang Z, Su C, Wang S, Han Y, Chen X, Xu S, Zhou Z, Hu N, Su Y, Zeng M.

Nanotechnology. 2020 Feb 7;31(7):075501. doi: 10.1088/1361-6528/ab5271. Epub 2019 Oct 29.

PMID:
31661676
9.

Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

Penza M, Rossi R, Alvisi M, Serra E.

Nanotechnology. 2010 Mar 12;21(10):105501. doi: 10.1088/0957-4484/21/10/105501. Epub 2010 Feb 15.

PMID:
20154374
10.

Faster response of NO₂ sensing in graphene-WO₃ nanocomposites.

Srivastava S, Jain K, Singh VN, Singh S, Vijayan N, Dilawar N, Gupta G, Senguttuvan TD.

Nanotechnology. 2012 May 25;23(20):205501. doi: 10.1088/0957-4484/23/20/205501. Epub 2012 Apr 30.

PMID:
22543228
11.

Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor.

Qu F, Zhang S, Zhang B, Zhou X, Du S, Lin CT, Ruan S, Yang M.

Mikrochim Acta. 2019 Mar 7;186(4):222. doi: 10.1007/s00604-019-3335-7.

PMID:
30847573
12.

The enhanced alcohol-sensing response of ultrathin WO3 nanoplates.

Chen D, Hou X, Wen H, Wang Y, Wang H, Li X, Zhang R, Lu H, Xu H, Guan S, Sun J, Gao L.

Nanotechnology. 2010 Jan 22;21(3):035501. doi: 10.1088/0957-4484/21/3/035501.

PMID:
19966401
13.

A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit.

Li Z, Huang Y, Zhang S, Chen W, Kuang Z, Ao D, Liu W, Fu Y.

J Hazard Mater. 2015 Dec 30;300:167-174. doi: 10.1016/j.jhazmat.2015.07.003. Epub 2015 Jul 3.

PMID:
26177493
14.

Detection of liquid petroleum gas using mixed nanosized tungsten oxide-based thick-film semiconductor sensor.

Chaudhari GN, Bende AM, Bodade AB, Patil SS, Manorama SV.

Talanta. 2006 Mar 15;69(1):187-91. doi: 10.1016/j.talanta.2005.09.024. Epub 2005 Oct 19.

PMID:
18970552
15.

A MEMS-based Benzene Gas Sensor with a Self-heating WO(3) Sensing Layer.

Ke MT, Lee MT, Lee CY, Fu LM.

Sensors (Basel). 2009;9(4):2895-906. doi: 10.3390/s90402895. Epub 2009 Apr 21.

16.

Effect of the Functionalization of Porous Silicon/WO₃ Nanorods with Pd Nanoparticles and Their Enhanced NO₂-Sensing Performance at Room Temperature.

Qiang X, Hu M, Zhao B, Qin Y, Yang R, Zhou L, Qin Y.

Materials (Basel). 2018 May 10;11(5). pii: E764. doi: 10.3390/ma11050764.

17.

Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method.

Wang C, Guo L, Xie N, Kou X, Sun Y, Chuai X, Zhang S, Song H, Wang Y, Lu G.

J Colloid Interface Sci. 2018 Feb 15;512:740-749. doi: 10.1016/j.jcis.2017.09.068. Epub 2017 Sep 21.

PMID:
29107925
18.

Gas Sensor Based on 3-D WO₃ Inverse Opal: Design and Applications.

Xing R, Du Y, Zhao X, Zhang X.

Sensors (Basel). 2017 Mar 29;17(4). pii: E710. doi: 10.3390/s17040710.

19.

Size- and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas.

Chen D, Gao L, Yasumori A, Kuroda K, Sugahara Y.

Small. 2008 Oct;4(10):1813-22. doi: 10.1002/smll.200800205.

PMID:
18844301
20.

Hydrothermal Fabrication of WO₃ Hierarchical Architectures: Structure, Growth and Response.

Wu CS.

Nanomaterials (Basel). 2015 Jul 22;5(3):1250-1255. doi: 10.3390/nano5031250.

Supplemental Content

Support Center