Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.

Bi H, Zhu H, Zu L, Gao Y, Gao S, Wu Z.

Waste Manag Res. 2019 Sep 5:734242X19871610. doi: 10.1177/0734242X19871610. [Epub ahead of print]

PMID:
31486742
2.

Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries.

Bi H, Zhu H, Zu L, He S, Gao Y, Peng J.

Waste Manag Res. 2019 Aug;37(8):767-780. doi: 10.1177/0734242X19855432. Epub 2019 Jun 20.

PMID:
31218930
3.

A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries.

Bi H, Zhu H, Zu L, Bai Y, Gao S, Gao Y.

Waste Manag. 2019 Dec;100:1-9. doi: 10.1016/j.wasman.2019.08.041. Epub 2019 Sep 4.

PMID:
31493683
4.

Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries.

Bi H, Zhu H, Zu L, He S, Gao Y, Gao S.

Waste Manag Res. 2019 Apr;37(4):374-385. doi: 10.1177/0734242X18823939. Epub 2019 Feb 6.

PMID:
30726173
5.

Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.

Lin SL, Huang KL, Wang IC, Chou IC, Kuo YM, Hung CH, Lin C.

J Air Waste Manag Assoc. 2016 Mar;66(3):296-306. doi: 10.1080/10962247.2015.1131206.

PMID:
26651506
6.

Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.

Wang H, Liu J, Bai X, Wang S, Yang D, Fu Y, He Y.

Waste Manag. 2019 May 15;91:89-98. doi: 10.1016/j.wasman.2019.04.058. Epub 2019 May 4.

PMID:
31203946
7.

Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

Zeng X, Li J.

J Hazard Mater. 2014 Apr 30;271:50-6. doi: 10.1016/j.jhazmat.2014.02.001. Epub 2014 Feb 11.

PMID:
24607415
8.

A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries.

Wang M, Tan Q, Liu L, Li J.

J Hazard Mater. 2019 Dec 15;380:120846. doi: 10.1016/j.jhazmat.2019.120846. Epub 2019 Jun 29.

PMID:
31279946
9.

Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.

Natarajan S, Boricha AB, Bajaj HC.

Waste Manag. 2018 Jul;77:455-465. doi: 10.1016/j.wasman.2018.04.032. Epub 2018 Apr 26.

PMID:
29706480
10.

Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.

He LP, Sun SY, Song XF, Yu JG.

Waste Manag. 2015 Dec;46:523-8. doi: 10.1016/j.wasman.2015.08.035. Epub 2015 Aug 29.

PMID:
26323202
11.

Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries.

Zhong X, Liu W, Han J, Jiao F, Qin W, Liu T, Zhao C.

Waste Manag. 2019 Apr 15;89:83-93. doi: 10.1016/j.wasman.2019.03.068. Epub 2019 Apr 5.

PMID:
31079762
12.

LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene.

Fu Y, Wei Q, Zhang G, Zhong Y, Moghimian N, Tong X, Sun S.

Materials (Basel). 2019 Mar 13;12(6). pii: E842. doi: 10.3390/ma12060842.

13.

A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries.

He K, Zhang ZY, Alai L, Zhang FS.

J Hazard Mater. 2019 Aug 5;375:43-51. doi: 10.1016/j.jhazmat.2019.03.120. Epub 2019 Mar 29.

PMID:
31039463
14.

Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.

Zhang T, He Y, Wang F, Ge L, Zhu X, Li H.

Waste Manag. 2014 Jun;34(6):1051-8. doi: 10.1016/j.wasman.2014.01.002. Epub 2014 Jan 25.

PMID:
24472715
15.

Key factors of eddy current separation for recovering aluminum from crushed e-waste.

Ruan J, Dong L, Zheng J, Zhang T, Huang M, Xu Z.

Waste Manag. 2017 Feb;60:84-90. doi: 10.1016/j.wasman.2016.08.018. Epub 2016 Aug 21.

PMID:
27553908
16.

Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries.

He LP, Sun SY, Song XF, Yu JG.

Waste Manag. 2017 Jun;64:171-181. doi: 10.1016/j.wasman.2017.02.011. Epub 2017 Mar 18.

PMID:
28325707
17.

Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes.

Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS.

Nano Lett. 2012 May 9;12(5):2446-51. doi: 10.1021/nl300528p. Epub 2012 Apr 30.

PMID:
22524299
18.

Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.

Zheng X, Gao W, Zhang X, He M, Lin X, Cao H, Zhang Y, Sun Z.

Waste Manag. 2017 Feb;60:680-688. doi: 10.1016/j.wasman.2016.12.007. Epub 2016 Dec 18.

PMID:
27993441
19.

Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.

Sun L, Qiu K.

J Hazard Mater. 2011 Oct 30;194:378-84. doi: 10.1016/j.jhazmat.2011.07.114. Epub 2011 Aug 9.

PMID:
21872390
20.

Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries.

Fischer MG, Hua X, Wilts BD, Castillo-Martínez E, Steiner U.

ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1646-1653. doi: 10.1021/acsami.7b12376. Epub 2018 Jan 5.

PMID:
29266921

Supplemental Content

Support Center