Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Impacts of a novel strain QY-1 allied with chromium immobilizing materials on chromium availability and soil biochemical properties.

Hou S, Wu B, Luo Y, Li Y, Ma H, Peng D, Xu H.

J Hazard Mater. 2019 Aug 26;382:121093. doi: 10.1016/j.jhazmat.2019.121093. [Epub ahead of print]

PMID:
31476721
2.

Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron.

Hou S, Wu B, Peng D, Wang Z, Wang Y, Xu H.

Environ Pollut. 2019 Sep;252(Pt A):553-561. doi: 10.1016/j.envpol.2019.05.083. Epub 2019 May 27.

PMID:
31181500
3.

Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron.

Li Z, Xu S, Xiao G, Qian L, Song Y.

J Environ Manage. 2019 Aug 15;244:33-39. doi: 10.1016/j.jenvman.2019.04.130. Epub 2019 May 17.

PMID:
31108308
4.

In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.

Zhang R, Zhang N, Fang Z.

Water Sci Technol. 2018 Mar;77(5-6):1622-1631. doi: 10.2166/wst.2018.039.

PMID:
29595164
5.

Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material.

Zhu F, Li L, Ren W, Deng X, Liu T.

Environ Pollut. 2017 Aug;227:444-450. doi: 10.1016/j.envpol.2017.04.074. Epub 2017 May 6.

PMID:
28486187
6.

Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.

Su H, Fang Z, Tsang PE, Fang J, Zhao D.

Environ Pollut. 2016 Jul;214:94-100. doi: 10.1016/j.envpol.2016.03.072. Epub 2016 Apr 8.

PMID:
27064615
7.

Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

Di Palma L, Gueye MT, Petrucci E.

J Hazard Mater. 2015 Jan 8;281:70-76. doi: 10.1016/j.jhazmat.2014.07.058. Epub 2014 Aug 4.

PMID:
25139286
8.

Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.

Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D.

J Hazard Mater. 2016 Nov 15;318:533-540. doi: 10.1016/j.jhazmat.2016.07.039. Epub 2016 Jul 18.

PMID:
27469041
9.

Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.

Němeček J, Lhotský O, Cajthaml T.

Sci Total Environ. 2014 Jul 1;485-486:739-747. doi: 10.1016/j.scitotenv.2013.11.105. Epub 2013 Dec 22.

PMID:
24369106
10.

Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.

Singh R, Misra V, Singh RP.

Bull Environ Contam Toxicol. 2012 Feb;88(2):210-4. doi: 10.1007/s00128-011-0425-6. Epub 2011 Oct 14.

PMID:
21996721
11.

The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).

Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D.

Chemosphere. 2015 Nov;138:726-34. doi: 10.1016/j.chemosphere.2015.07.051. Epub 2015 Aug 7.

PMID:
26267258
12.

[Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

Ma SY, Zhu F, Shang ZF.

Huan Jing Ke Xue. 2016 May 15;37(5):1953-9. Chinese.

PMID:
27506053
13.

Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.

Huang XY, Ling L, Zhang WX.

J Environ Sci (China). 2018 May;67:4-13. doi: 10.1016/j.jes.2018.01.029. Epub 2018 Feb 7.

PMID:
29778172
14.

Chromium Removal with Environmentally Friendly Iron Nanoparticles in a Pilot Scale Study.

Mystrioti C, Toli A, Papasiopi N, Dermatas D, Thimi S.

Bull Environ Contam Toxicol. 2018 Dec;101(6):705-710. doi: 10.1007/s00128-018-2424-3. Epub 2018 Aug 22.

PMID:
30167762
15.

Effects of surface-modified biochars and activated carbon on the transformation of soil inorganic nitrogen and growth of maize under chromium stress.

Zhu Y, Li H, Wu Y, Yin XA, Zhang G.

Chemosphere. 2019 Jul;227:124-132. doi: 10.1016/j.chemosphere.2019.04.042. Epub 2019 Apr 8.

PMID:
30986594
16.

Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.

Wang Y, Fang Z, Kang Y, Tsang EP.

J Hazard Mater. 2014 Jun 30;275:230-7. doi: 10.1016/j.jhazmat.2014.04.056. Epub 2014 May 2.

PMID:
24880637
17.

A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site.

Ravikumar KV, Kumar D, Rajeshwari A, Madhu GM, Mrudula P, Chandrasekaran N, Mukherjee A.

Environ Sci Pollut Res Int. 2016 Feb;23(3):2613-27. doi: 10.1007/s11356-015-5382-x. Epub 2015 Oct 3.

PMID:
26432266
18.

Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.

Liu TY, Zhao L, Tan X, Liu SJ, Li JJ, Qi Y, Mao GZ.

Water Sci Technol. 2010;61(11):2759-67. doi: 10.2166/wst.2010.167.

PMID:
20489248
19.

Evaluation of the stability of a nanoremediation strategy using barley plants.

Gil-Díaz M, González A, Alonso J, Lobo MC.

J Environ Manage. 2016 Jan 1;165:150-158. doi: 10.1016/j.jenvman.2015.09.032. Epub 2015 Sep 30.

PMID:
26431642
20.

Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.

Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y.

Environ Pollut. 2016 Apr;211:363-9. doi: 10.1016/j.envpol.2016.01.017. Epub 2016 Jan 18.

PMID:
26796746

Supplemental Content

Support Center