Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9.

Mehravar M, Shirazi A, Mehrazar MM, Nazari M, Banan M, Salimi M.

Iran J Biotechnol. 2019 Jan 11;17(1):e2205. doi: 10.21859/ijb.2205. eCollection 2019 Jan.

2.

CRISPR/Cas9 System for Efficient Genome Editing and Targeting in the Mouse NIH/3T3 Cells.

Mehravar M, Shirazi A, Mehrazar MM, Nazari M, Banan M.

Avicenna J Med Biotechnol. 2019 Apr-Jun;11(2):149-155.

3.

Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M.

Nature. 2016 May 5;533(7601):125-9. doi: 10.1038/nature17664. Epub 2016 Apr 27.

PMID:
27120160
4.

Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool.

Wettstein R, Bodak M, Ciaudo C.

Methods Mol Biol. 2016;1341:321-43. doi: 10.1007/7651_2015_213.

PMID:
25762293
5.

Rapid generation of novel models of RAG1 deficiency by CRISPR/Cas9-induced mutagenesis in murine zygotes.

Ott de Bruin L, Yang W, Capuder K, Lee YN, Antolini M, Meyers R, Gellert M, Musunuru K, Manis J, Notarangelo L.

Oncotarget. 2016 Mar 15;7(11):12962-74. doi: 10.18632/oncotarget.7341.

6.

CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.

Bishop KA, Harrington A, Kouranova E, Weinstein EJ, Rosen CJ, Cui X, Liaw L.

G3 (Bethesda). 2016 Jul 7;6(7):2051-61. doi: 10.1534/g3.116.030601.

7.

Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.

Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A.

PLoS One. 2015 Aug 25;10(8):e0136690. doi: 10.1371/journal.pone.0136690. eCollection 2015.

8.

Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System.

Zhang S, Zhang R, Gao J, Gu T, Song G, Li W, Li D, Li Y, Li G.

Int J Mol Sci. 2019 Aug 30;20(17). pii: E4257. doi: 10.3390/ijms20174257.

9.

CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells.

Ge X, Xi H, Yang F, Zhi X, Fu Y, Chen D, Xu RH, Lin G, Qu J, Zhao J, Gu F.

Mol Ther Nucleic Acids. 2016 Nov 29;5(11):e393. doi: 10.1038/mtna.2016.100.

10.

Generation and CRISPR/Cas9 editing of transformed progenitor B cells as a pseudo-physiological system to study DNA repair gene function in V(D)J recombination.

Lenden Hasse H, Lescale C, Bianchi JJ, Yu W, Bedora-Faure M, Deriano L.

J Immunol Methods. 2017 Dec;451:71-77. doi: 10.1016/j.jim.2017.08.007. Epub 2017 Sep 4.

11.

Efficient CRISPR/Cas9-based gene knockout in watermelon.

Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y.

Plant Cell Rep. 2017 Mar;36(3):399-406. doi: 10.1007/s00299-016-2089-5. Epub 2016 Dec 19.

PMID:
27995308
12.

The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones.

Watanabe S, Sakurai T, Nakamura S, Miyoshi K, Sato M.

Int J Mol Sci. 2018 Apr 4;19(4). pii: E1075. doi: 10.3390/ijms19041075.

13.

A Modified Monomeric Red Fluorescent Protein Reporter for Assessing CRISPR Activity.

Højland Knudsen C, Ásgrímsdóttir ES, Rahimi K, Gill KP, Frandsen S, Hvolbøl Buchholdt S, Chen M, Kjems J, Febbraro F, Denham M.

Front Cell Dev Biol. 2018 May 15;6:54. doi: 10.3389/fcell.2018.00054. eCollection 2018.

14.

Heritable Genomic Fragment Deletions and Small Indels in the Putative ENGase Gene Induced by CRISPR/Cas9 in Barley.

Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E.

Front Plant Sci. 2017 Apr 25;8:540. doi: 10.3389/fpls.2017.00540. eCollection 2017.

15.

A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG.

Mol Plant. 2015 Aug;8(8):1274-84. doi: 10.1016/j.molp.2015.04.007. Epub 2015 Apr 24.

16.

A new genetic tool to improve immune-compromised mouse models: Derivation and CRISPR/Cas9-mediated targeting of NRG embryonic stem cell lines.

Martin Gonzalez J, Baudet A, Abelechian S, Bonderup K, d'Altri T, Porse B, Brakebusch C, Juliusson G, Cammenga J.

Genesis. 2018 Sep;56(9):e23238. doi: 10.1002/dvg.23238.

PMID:
30010246
17.

CRISPR/Cas9 Genome Editing in Embryonic Stem Cells.

Andrey G, Spielmann M.

Methods Mol Biol. 2017;1468:221-34. doi: 10.1007/978-1-4939-4035-6_15.

PMID:
27662879
18.

Genome Engineering for Stem Cell Transplantation.

Argani H.

Exp Clin Transplant. 2019 Jan;17(Suppl 1):31-37. doi: 10.6002/ect.MESOT2018.L34. Review.

19.

Gene Editing in Clinical Practice: Where are We?

Mittal RD.

Indian J Clin Biochem. 2019 Jan;34(1):19-25. doi: 10.1007/s12291-018-0804-4. Epub 2019 Jan 1. Review.

PMID:
30728669
20.

A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing.

Bell CC, Magor GW, Gillinder KR, Perkins AC.

BMC Genomics. 2014 Nov 20;15:1002. doi: 10.1186/1471-2164-15-1002.

Supplemental Content

Support Center