Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Bio-mediated synthesis of 5-FU based nanoparticles employing orange fruit juice: a novel drug delivery system to treat skin fibrosarcoma in model animals.

Mohammad O, Faisal SM, Ahmad N, Rauf MA, Umar MS, Mujeeb AA, Pachauri P, Ahmed A, Kashif M, Ajmal M, Zubair S.

Sci Rep. 2019 Aug 23;9(1):12288. doi: 10.1038/s41598-019-48180-7.

2.

Aloe vera induced biomimetic assemblage of nucleobase into nanosized particles.

Chauhan A, Zubair S, Sherwani A, Owais M.

PLoS One. 2012;7(3):e32049. doi: 10.1371/journal.pone.0032049. Epub 2012 Mar 5.

3.

Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells.

Laquintana V, Denora N, Lopalco A, Lopedota A, Cutrignelli A, Lasorsa FM, Agostino G, Franco M.

Mol Pharm. 2014 Mar 3;11(3):859-71. doi: 10.1021/mp400536z. Epub 2014 Jan 27.

PMID:
24410438
4.

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles.

Mohiyuddin S, Naqvi S, Packirisamy G.

Beilstein J Nanotechnol. 2018 Sep 20;9:2499-2515. doi: 10.3762/bjnano.9.233. eCollection 2018.

5.

Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery.

Yu X, Hou J, Shi Y, Su C, Zhao L.

Int J Nanomedicine. 2016 Nov 14;11:6035-6046. eCollection 2016.

6.

Synthesis of Biotin-Modified Galactosylated Chitosan Nanoparticles and Their Characteristics in Vitro and in Vivo.

Cheng M, Ma D, Zhi K, Liu B, Zhu W.

Cell Physiol Biochem. 2018;50(2):569-584. doi: 10.1159/000494169. Epub 2018 Oct 11.

7.

Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo.

Cheng M, Gao X, Wang Y, Chen H, He B, Xu H, Li Y, Han J, Zhang Z.

Mar Drugs. 2013 Sep 17;11(9):3517-36. doi: 10.3390/md11093517.

8.

Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil.

El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL.

Int J Pharm. 2017 Jan 10;516(1-2):61-70. doi: 10.1016/j.ijpharm.2016.11.012. Epub 2016 Nov 5.

PMID:
27825867
9.

Development of a HILIC method for the determination of 5-fluorouracil from nano drug delivery systems and rat skin extracts.

Amasya G, Gumustas M, Badilli U, Ozkan SA, Tarimci N.

J Pharm Biomed Anal. 2018 May 30;154:285-293. doi: 10.1016/j.jpba.2018.03.021. Epub 2018 Mar 12.

PMID:
29567571
10.

Selenium Nanoparticles Induce the Chemo-Sensitivity of Fluorouracil Nanoparticles in Breast and Colon Cancer Cells.

Abd-Rabou AA, Shalby AB, Ahmed HH.

Biol Trace Elem Res. 2019 Jan;187(1):80-91. doi: 10.1007/s12011-018-1360-8. Epub 2018 May 11.

PMID:
29748931
11.

Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy.

Gao Z, Li Z, Yan J, Wang P.

Drug Des Devel Ther. 2017 Sep 5;11:2595-2604. doi: 10.2147/DDDT.S140797. eCollection 2017.

12.

QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment.

Amasya G, Aksu B, Badilli U, Onay-Besikci A, Tarimci N.

Int J Pharm. 2019 May 30;563:110-121. doi: 10.1016/j.ijpharm.2019.03.056. Epub 2019 Mar 29.

PMID:
30935913
13.

Lactoferrin nanoparticle mediated targeted delivery of 5-fluorouracil for enhanced therapeutic efficacy.

Kumari S, Kondapi AK.

Int J Biol Macromol. 2017 Feb;95:232-237. doi: 10.1016/j.ijbiomac.2016.10.110. Epub 2016 Nov 15.

PMID:
27864056
14.

Encapsulation and Systemic Delivery of 5-Fluorouracil Conjugated with Silkworm Pupa Derived Protein Nanoparticles for Experimental Lymphoma Cancer.

Reneeta NP, Thiyonila B, Aathmanathan VS, Ramya T, Chandrasekar P, Subramanian N, Prajapati VK, Krishnan M.

Bioconjug Chem. 2018 Sep 19;29(9):2994-3009. doi: 10.1021/acs.bioconjchem.8b00404. Epub 2018 Aug 22.

PMID:
30089206
15.

Fluorouracil-Loaded Gold Nanoparticles for the Treatment of Skin Cancer: Development, in Vitro Characterization, and in Vivo Evaluation in a Mouse Skin Cancer Xenograft Model.

Safwat MA, Soliman GM, Sayed D, Attia MA.

Mol Pharm. 2018 Jun 4;15(6):2194-2205. doi: 10.1021/acs.molpharmaceut.8b00047. Epub 2018 May 7.

PMID:
29701979
16.

Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA.

Nair K L, Jagadeeshan S, Nair SA, Kumar GS.

Int J Nanomedicine. 2011;6:1685-97. doi: 10.2147/IJN.S20165. Epub 2011 Aug 17.

17.

5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model.

Cheng M, He B, Wan T, Zhu W, Han J, Zha B, Chen H, Yang F, Li Q, Wang W, Xu H, Ye T.

PLoS One. 2012;7(10):e47115. doi: 10.1371/journal.pone.0047115. Epub 2012 Oct 15.

18.

pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities.

Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, Wang Y, Leong KW, Chen M.

Acta Biomater. 2017 Aug;58:349-364. doi: 10.1016/j.actbio.2017.04.029. Epub 2017 Apr 26.

PMID:
28455219
19.

Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery.

Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P.

Acta Biomater. 2019 Sep 15;96:517-536. doi: 10.1016/j.actbio.2019.07.006. Epub 2019 Jul 5.

PMID:
31284098
20.

Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.

Antoniraj MG, Ayyavu M, Henry LJK, Nageshwar Rao G, Natesan S, Sundar DS, Kandasamy R.

Drug Dev Ind Pharm. 2018 Mar;44(3):365-376. doi: 10.1080/03639045.2017.1371741. Epub 2017 Dec 5.

PMID:
28835136

Supplemental Content

Support Center