Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Active Complexes on Engineered Crystal Facets of MnOx-CeO2 and Scale-Up Demonstration on an Air Cleaner for Indoor Formaldehyde Removal.

Li H, Ho W, Cao J, Park D, Lee SC, Huang Y.

Environ Sci Technol. 2019 Sep 17;53(18):10906-10916. doi: 10.1021/acs.est.9b03197. Epub 2019 Sep 5.

PMID:
31441306
2.

Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature.

Zhao DZ, Shi C, Li XS, Zhu AM, Jang BW.

J Hazard Mater. 2012 Nov 15;239-240:362-9. doi: 10.1016/j.jhazmat.2012.09.009. Epub 2012 Sep 12.

PMID:
23021101
3.

Fabrication of MnOx-CeO2/cordierite catalysts doped with FeOx and CuO for preferable catalytic oxidation of chlorobenzene.

Huang Q, Si H, Yu S, Wang J, Tao T, Yang B, Zhao Y, Chen M.

Environ Technol. 2018 Oct 31:1-13. doi: 10.1080/09593330.2018.1543359. [Epub ahead of print]

PMID:
30379618
4.

Manganese-Doped CeO₂ Nanocubes for Catalytic Combustion of Chlorobenzene: An Experimental and Density Functional Theory Study.

Zhao P, Lu Z, Liu S.

J Nanosci Nanotechnol. 2018 May 1;18(5):3348-3355. doi: 10.1166/jnn.2018.14660.

PMID:
29442838
5.

Catalytic Oxidation of NO over MnOx-CeO₂ and MnOx-TiO₂ Catalysts.

Zeng X, Huo X, Zhu T, Hong X, Sun Y.

Molecules. 2016 Nov 14;21(11). pii: E1491.

6.

Support Morphology-Dependent Catalytic Activity of Pd/CeO₂ for Formaldehyde Oxidation.

Tan H, Wang J, Yu S, Zhou K.

Environ Sci Technol. 2015 Jul 21;49(14):8675-82. doi: 10.1021/acs.est.5b01264. Epub 2015 Jul 10.

PMID:
26120873
7.

MnO(x) Nanoparticle-Dispersed CeO2 Nanocubes: A Remarkable Heteronanostructured System with Unusual Structural Characteristics and Superior Catalytic Performance.

Putla S, Amin MH, Reddy BM, Nafady A, Al Farhan KA, Bhargava SK.

ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16525-35. doi: 10.1021/acsami.5b03988. Epub 2015 Jul 27.

PMID:
26214855
8.

Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide.

Wang X, Du LY, Du M, Ma C, Zeng J, Jia CJ, Si R.

Phys Chem Chem Phys. 2017 Jun 7;19(22):14533-14542. doi: 10.1039/c7cp02004j.

PMID:
28537308
9.

[Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature].

Guo J, Li CT, Lu P, Cui HF, Peng DL, Wen QB.

Huan Jing Ke Xue. 2011 Aug;32(8):2240-6. Chinese.

PMID:
22619944
10.

Ru/CeO2 Catalyst with Optimized CeO2 Support Morphology and Surface Facets for Propane Combustion.

Wang Z, Huang Z, Brosnahan JT, Zhang S, Guo Y, Guo Y, Wang L, Wang Y, Zhan W.

Environ Sci Technol. 2019 May 7;53(9):5349-5358. doi: 10.1021/acs.est.9b01929. Epub 2019 Apr 24.

PMID:
30990306
11.

In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions.

Li H, Cui L, Lu Y, Huang Y, Cao J, Park D, Lee SC, Ho W.

Environ Sci Technol. 2019 May 7;53(9):5230-5240. doi: 10.1021/acs.est.8b06234. Epub 2019 Apr 23.

PMID:
30990308
12.

Efficient removal of formaldehyde by nanosized gold on well-defined CeO₂ nanorods at room temperature.

Xu Q, Lei W, Li X, Qi X, Yu J, Liu G, Wang J, Zhang P.

Environ Sci Technol. 2014 Aug 19;48(16):9702-8. doi: 10.1021/es5019477. Epub 2014 Jul 24.

PMID:
25019508
13.

Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.

Chen L, Si Z, Wu X, Weng D, Wu Z.

J Environ Sci (China). 2015 May 1;31:240-7. doi: 10.1016/j.jes.2014.07.037. Epub 2015 Feb 20.

PMID:
25968280
14.

Enhanced CH4 and CO Oxidation over Ce1- xFe xO2-δ Hybrid Catalysts by Tuning the Lattice Distortion and the State of Surface Iron Species.

Li D, Li K, Xu R, Zhu X, Wei Y, Tian D, Cheng X, Wang H.

ACS Appl Mater Interfaces. 2019 May 29;11(21):19227-19241. doi: 10.1021/acsami.9b05409. Epub 2019 May 17.

PMID:
31067022
15.

CeO2 nanorods-supported transition metal catalysts for CO oxidation.

Mock SA, Sharp SE, Stoner TR, Radetic MJ, Zell ET, Wang R.

J Colloid Interface Sci. 2016 Mar 15;466:261-7. doi: 10.1016/j.jcis.2015.12.026. Epub 2015 Dec 15.

PMID:
26745742
16.

Highly selective catalytic reduction of NOx by MnOx-CeO2-Al2O3 catalysts prepared by self-propagating high-temperature synthesis.

Wang C, Yu F, Zhu M, Tang C, Zhang K, Zhao D, Dong L, Dai B.

J Environ Sci (China). 2019 Jan;75:124-135. doi: 10.1016/j.jes.2018.03.011. Epub 2018 Mar 17.

PMID:
30473277
17.

Facet-Controlled CeO2 Nanocrystals for Oxidative Coupling of Methane.

Sun Y, Shen Y, Song J, Ba R, Huang S, Zhao Y, Zhang J, Sun Y, Zhu Y.

J Nanosci Nanotechnol. 2016 May;16(5):4692-700.

PMID:
27483809
18.

Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.

Bai B, Qiao Q, Arandiyan H, Li J, Hao J.

Environ Sci Technol. 2016 Mar 1;50(5):2635-40. doi: 10.1021/acs.est.5b03342. Epub 2016 Feb 15.

PMID:
26629972
19.

Supported ceria-modified silver catalysts with high activity and stability for toluene removal.

Zhang Y, Liu Y, Xie S, Huang H, Guo G, Dai H, Deng J.

Environ Int. 2019 Jul;128:335-342. doi: 10.1016/j.envint.2019.04.062. Epub 2019 May 8.

20.

In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.

Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M.

J Phys Chem B. 2006 Jan 12;110(1):428-34.

PMID:
16471552

Supplemental Content

Support Center