Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells.

Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Destici E, Qiu Y, Hu R, Lee AY, Chee S, Ma K, Ye Z, Zhu Q, Huang H, Fang R, Yu L, Izpisua Belmonte JC, Wu J, Evans SM, Chi NC, Ren B.

Nat Genet. 2019 Sep;51(9):1380-1388. doi: 10.1038/s41588-019-0479-7. Epub 2019 Aug 19.

PMID:
31427791
2.
3.

Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

Smith EM, Lajoie BR, Jain G, Dekker J.

Am J Hum Genet. 2016 Jan 7;98(1):185-201. doi: 10.1016/j.ajhg.2015.12.002.

4.

HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency.

Santoni FA, Guerra J, Luban J.

Retrovirology. 2012 Dec 20;9:111. doi: 10.1186/1742-4690-9-111.

5.

Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.

Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, Gelfand MS, Shevelyov YY, Razin SV.

Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30.

6.
7.

The Exaptation of HERV-H: Evolutionary Analyses Reveal the Genomic Features of Highly Transcribed Elements.

Gemmell P, Hein J, Katzourakis A.

Front Immunol. 2019 Jul 9;10:1339. doi: 10.3389/fimmu.2019.01339. eCollection 2019.

9.

TAD disruption as oncogenic driver.

Valton AL, Dekker J.

Curr Opin Genet Dev. 2016 Feb;36:34-40. doi: 10.1016/j.gde.2016.03.008. Epub 2016 Apr 22. Review.

10.

Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa.

Lazaros L, Kitsou C, Kostoulas C, Bellou S, Hatzi E, Ladias P, Stefos T, Markoula S, Galani V, Vartholomatos G, Tzavaras T, Georgiou I.

Fertil Steril. 2017 Mar;107(3):821-830. doi: 10.1016/j.fertnstert.2016.12.027. Epub 2017 Jan 27.

PMID:
28139237
12.

Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses.

Ito J, Sugimoto R, Nakaoka H, Yamada S, Kimura T, Hayano T, Inoue I.

PLoS Genet. 2017 Jul 12;13(7):e1006883. doi: 10.1371/journal.pgen.1006883. eCollection 2017 Jul.

13.

Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.

Gong Y, Lazaris C, Sakellaropoulos T, Lozano A, Kambadur P, Ntziachristos P, Aifantis I, Tsirigos A.

Nat Commun. 2018 Feb 7;9(1):542. doi: 10.1038/s41467-018-03017-1.

15.

Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.

Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO, Kurscheid S, Tremethick D, Collas P.

Nat Genet. 2019 May;51(5):835-843. doi: 10.1038/s41588-019-0392-0. Epub 2019 Apr 22.

PMID:
31011212
16.

Evolutionary stability of topologically associating domains is associated with conserved gene regulation.

Krefting J, Andrade-Navarro MA, Ibn-Salem J.

BMC Biol. 2018 Aug 7;16(1):87. doi: 10.1186/s12915-018-0556-x.

17.

5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.

Poterlowicz K, Yarker JL, Malashchuk I, Lajoie BR, Mardaryev AN, Gdula MR, Sharov AA, Kohwi-Shigematsu T, Botchkarev VA, Fessing MY.

PLoS Genet. 2017 Sep 1;13(9):e1006966. doi: 10.1371/journal.pgen.1006966. eCollection 2017 Sep.

18.

Topologically Associating Domains: An invariant framework or a dynamic scaffold?

Cubeñas-Potts C, Corces VG.

Nucleus. 2015;6(6):430-4. doi: 10.1080/19491034.2015.1096467. Epub 2015 Sep 29.

19.

Unraveling the mechanisms of chromatin fibril packaging.

Gavrilov AA, Shevelyov YY, Ulianov SV, Khrameeva EE, Kos P, Chertovich A, Razin SV.

Nucleus. 2016 May 3;7(3):319-24. doi: 10.1080/19491034.2016.1190896.

20.

Integration target site selection by a resurrected human endogenous retrovirus.

Brady T, Lee YN, Ronen K, Malani N, Berry CC, Bieniasz PD, Bushman FD.

Genes Dev. 2009 Mar 1;23(5):633-42. doi: 10.1101/gad.1762309.

Supplemental Content

Support Center