Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics.

Jiang T, Mungia-Lopez J, Gu K, Bavoux M, Flores-Torres S, Kort-Mascort J, Grant J, Vijayakumar S, De Leon Rodriguez A, Ehrlicher A, Kinsella JM.

Biofabrication. 2019 Aug 12. doi: 10.1088/1758-5090/ab3a5c. [Epub ahead of print]

PMID:
31404917
2.

Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.

Jiang T, Munguia-Lopez J, Flores-Torres S, Grant J, Vijayakumar S, De Leon-Rodriguez A, Kinsella JM.

J Vis Exp. 2018 Jul 2;(137). doi: 10.3791/57826.

PMID:
30010644
3.

A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.

Skardal A, Devarasetty M, Kang HW, Mead I, Bishop C, Shupe T, Lee SJ, Jackson J, Yoo J, Soker S, Atala A.

Acta Biomater. 2015 Oct;25:24-34. doi: 10.1016/j.actbio.2015.07.030. Epub 2015 Jul 22.

PMID:
26210285
4.

Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels.

Jiang T, Munguia-Lopez JG, Flores-Torres S, Grant J, Vijayakumar S, Leon-Rodriguez A, Kinsella JM.

Sci Rep. 2017 Jul 4;7(1):4575. doi: 10.1038/s41598-017-04691-9.

5.

Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.

Giuseppe MD, Law N, Webb B, A Macrae R, Liew LJ, Sercombe TB, Dilley RJ, Doyle BJ.

J Mech Behav Biomed Mater. 2018 Mar;79:150-157. doi: 10.1016/j.jmbbm.2017.12.018. Epub 2017 Dec 21.

PMID:
29304429
6.

Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes.

Raddatz L, Lavrentieva A, Pepelanova I, Bahnemann J, Geier D, Becker T, Scheper T, Beutel S.

J Funct Biomater. 2018 Nov 9;9(4). pii: E63. doi: 10.3390/jfb9040063.

7.

The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J.

Acta Biomater. 2017 Oct 1;61:41-53. doi: 10.1016/j.actbio.2017.08.005. Epub 2017 Aug 4.

PMID:
28782725
8.

3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.

Liu P, Shen H, Zhi Y, Si J, Shi J, Guo L, Shen SG.

Colloids Surf B Biointerfaces. 2019 Sep 1;181:1026-1034. doi: 10.1016/j.colsurfb.2019.06.069. Epub 2019 Jun 29.

PMID:
31382330
9.

Bioprinting of a Cell-Laden Conductive Hydrogel Composite.

Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N.

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30518-30533. doi: 10.1021/acsami.9b07353. Epub 2019 Aug 16.

PMID:
31373791
10.

The bioink: A comprehensive review on bioprintable materials.

Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT.

Biotechnol Adv. 2017 Mar - Apr;35(2):217-239. doi: 10.1016/j.biotechadv.2016.12.006. Epub 2017 Jan 3. Review.

PMID:
28057483
11.

Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues.

Haring AP, Thompson EG, Tong Y, Laheri S, Cesewski E, Sontheimer H, Johnson BN.

Biofabrication. 2019 Feb 25;11(2):025009. doi: 10.1088/1758-5090/ab02c9.

PMID:
30695770
12.

Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.

Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, Fragasso A, Jin X, Khademhosseini A, Zhang YS.

Biofabrication. 2018 Jan 12;10(2):024102. doi: 10.1088/1758-5090/aa9d44.

13.

3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering.

Noh I, Kim N, Tran HN, Lee J, Lee C.

Biomater Res. 2019 Feb 6;23:3. doi: 10.1186/s40824-018-0152-8. eCollection 2019.

14.

Phage as versatile nanoink for printing 3-D cell-laden scaffolds.

Lee DY, Lee H, Kim Y, Yoo SY, Chung WJ, Kim G.

Acta Biomater. 2016 Jan;29:112-124. doi: 10.1016/j.actbio.2015.10.004. Epub 2015 Oct 9.

PMID:
26441128
15.

Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.

Zhang X, Kim GJ, Kang MG, Lee JK, Seo JW, Do JT, Hong K, Cha JM, Shin SR, Bae H.

Mar Drugs. 2018 Dec 4;16(12). pii: E484. doi: 10.3390/md16120484.

16.

Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue.

García-Lizarribar A, Fernández-Garibay X, Velasco-Mallorquí F, Castaño AG, Samitier J, Ramon-Azcon J.

Macromol Biosci. 2018 Oct;18(10):e1800167. doi: 10.1002/mabi.201800167. Epub 2018 Aug 29.

PMID:
30156756
17.

Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.

Wüst S, Godla ME, Müller R, Hofmann S.

Acta Biomater. 2014 Feb;10(2):630-40. doi: 10.1016/j.actbio.2013.10.016. Epub 2013 Oct 21.

PMID:
24157694
18.
19.

Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.

Liu C, Lewin Mejia D, Chiang B, Luker KE, Luker GD.

Acta Biomater. 2018 Jul 15;75:213-225. doi: 10.1016/j.actbio.2018.06.003. Epub 2018 Jun 5.

20.

Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels.

Ho SS, Murphy KC, Binder BY, Vissers CB, Leach JK.

Stem Cells Transl Med. 2016 Jun;5(6):773-81. doi: 10.5966/sctm.2015-0211. Epub 2016 Apr 7.

Supplemental Content

Support Center