Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Heat-Responsive Proteomics of a Heat-Sensitive Spinach Variety.

Li S, Yu J, Li Y, Zhang H, Bao X, Bian J, Xu C, Wang X, Cai X, Wang Q, Wang P, Guo S, Miao Y, Chen S, Qin Z, Dai S.

Int J Mol Sci. 2019 Aug 8;20(16). pii: E3872. doi: 10.3390/ijms20163872.

2.

Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach.

Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S.

Front Plant Sci. 2018 Jun 26;9:800. doi: 10.3389/fpls.2018.00800. eCollection 2018.

3.

De novo transcriptome sequencing and gene expression profiling of spinach (Spinacia oleracea L.) leaves under heat stress.

Yan J, Yu L, Xuan J, Lu Y, Lu S, Zhu W.

Sci Rep. 2016 Feb 9;6:19473. doi: 10.1038/srep19473.

4.

SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes.

Qi C, Lin X, Li S, Liu L, Wang Z, Li Y, Bai R, Xie Q, Zhang N, Ren S, Zhao B, Li X, Fan S, Guo YD.

Plant Sci. 2019 Jun;283:385-395. doi: 10.1016/j.plantsci.2019.03.003. Epub 2019 Mar 18.

PMID:
31128709
5.

Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress.

Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI.

Plant Physiol Biochem. 2015 Dec;97:235-45. doi: 10.1016/j.plaphy.2015.10.012. Epub 2015 Oct 22.

PMID:
26497449
6.

Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress.

Zhang C, Shi S.

Front Plant Sci. 2018 Feb 28;9:242. doi: 10.3389/fpls.2018.00242. eCollection 2018.

7.

Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea).

Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K.

J Plant Physiol. 2003 Sep;160(9):1085-91.

PMID:
14593810
8.

Quantitative Proteomic Profiling of Early and Late Responses to Salicylic Acid in Cucumber Leaves.

Dong CJ, Cao N, Li L, Shang QM.

PLoS One. 2016 Aug 23;11(8):e0161395. doi: 10.1371/journal.pone.0161395. eCollection 2016.

9.

[Heat-responsive mechanisms in plants revealed by proteomic analysis: A review].

Liu JM, Zhao Q, Yin ZP, Xu CX, Wang QH, Dai SJ.

Ying Yong Sheng Tai Xue Bao. 2015 Aug;26(8):2561-70. Review. Chinese.

PMID:
26685622
10.

Quantitative proteomics analysis by iTRAQ revealed underlying changes in thermotolerance of Arthrospira platensis.

Chang R, Lv B, Li B.

J Proteomics. 2017 Aug 8;165:119-131. doi: 10.1016/j.jprot.2017.06.015. Epub 2017 Jun 20.

PMID:
28645570
11.
12.
13.

Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis.

Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S.

J Proteomics. 2016 Jun 30;143:365-381. doi: 10.1016/j.jprot.2016.04.038. Epub 2016 Apr 27.

PMID:
27130536
14.

Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.

Wang R, Mei Y, Xu L, Zhu X, Wang Y, Guo J, Liu L.

Planta. 2018 May;247(5):1109-1122. doi: 10.1007/s00425-018-2846-5. Epub 2018 Jan 24.

PMID:
29368016
15.

Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.

Wang Y, Stevanato P, Lv C, Li R, Geng G.

J Agric Food Chem. 2019 May 29;67(21):6056-6073. doi: 10.1021/acs.jafc.9b00244. Epub 2019 May 16.

PMID:
31070911
16.

Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance.

Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X.

Plant Biol (Stuttg). 2013 Mar;15(2):292-303. doi: 10.1111/j.1438-8677.2012.00639.x. Epub 2012 Sep 10.

PMID:
22963252
17.

The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks.

Li H, Wang F, Chen XJ, Shi K, Xia XJ, Considine MJ, Yu JQ, Zhou YH.

Physiol Plant. 2014 Nov;152(3):571-84. doi: 10.1111/ppl.12200. Epub 2014 May 23.

PMID:
24735050
18.

Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.

Wang Y, Peng X, Salvato F, Wang Y, Yan X, Zhou Z, Lin J.

Ecotoxicol Environ Saf. 2019 Apr 30;171:12-25. doi: 10.1016/j.ecoenv.2018.12.046. Epub 2018 Dec 26.

PMID:
30593996
19.

Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics.

Wang X, Xu C, Cai X, Wang Q, Dai S.

Int J Mol Sci. 2017 Oct 20;18(10). pii: E2191. doi: 10.3390/ijms18102191. Review.

20.

Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress.

Jia T, Wang J, Chang W, Fan X, Sui X, Song F.

Int J Mol Sci. 2019 Feb 12;20(3). pii: E788. doi: 10.3390/ijms20030788.

Supplemental Content

Support Center