Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Inhibition of L. monocytogenes Biofilm Formation by the Amidase Domain of the Phage vB_LmoS_293 Endolysin.

Pennone V, Sanz-Gaitero M, O'Connor P, Coffey A, Jordan K, van Raaij MJ, McAuliffe O.

Viruses. 2019 Aug 6;11(8). pii: E722. doi: 10.3390/v11080722.

2.

A tail of two phages: genomic and functional analysis of Listeria monocytogenes phages vB_LmoS_188 and vB_LmoS_293 reveal the receptor-binding proteins involved in host specificity.

Casey A, Jordan K, Neve H, Coffey A, McAuliffe O.

Front Microbiol. 2015 Oct 9;6:1107. doi: 10.3389/fmicb.2015.01107. eCollection 2015.

3.

Complete Genome Sequences of vB_LmoS_188 and vB_LmoS_293, Two Bacteriophages with Specificity for Listeria monocytogenes Strains of Serotypes 4b and 4e.

Casey A, Jordan K, Coffey A, McAuliffe O.

Genome Announc. 2015 Apr 9;3(2). pii: e00040-15. doi: 10.1128/genomeA.00040-15.

4.

Recombinant Expression of a Putative Amidase Cloned from the Genome of Listeria monocytogenes that Lyses the Bacterium and its Monolayer in Conjunction with a Protease.

Simmons M, Morales CA, Oakley BB, Seal BS.

Probiotics Antimicrob Proteins. 2012 Mar;4(1):1-10. doi: 10.1007/s12602-011-9084-5.

PMID:
26781731
5.

Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk.

Zhang H, Bao H, Billington C, Hudson JA, Wang R.

Food Microbiol. 2012 Aug;31(1):133-6. doi: 10.1016/j.fm.2012.01.005. Epub 2012 Jan 30.

PMID:
22475951
7.

Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4.

Son B, Yun J, Lim JA, Shin H, Heu S, Ryu S.

BMC Microbiol. 2012 Mar 15;12:33. doi: 10.1186/1471-2180-12-33.

8.

Phage Inactivation of Listeria monocytogenes on San Daniele Dry-Cured Ham and Elimination of Biofilms from Equipment and Working Environments.

Iacumin L, Manzano M, Comi G.

Microorganisms. 2016 Jan 5;4(1). pii: E4. doi: 10.3390/microorganisms4010004.

9.

Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins.

Bai J, Kim YT, Ryu S, Lee JH.

Front Microbiol. 2016 Apr 8;7:474. doi: 10.3389/fmicb.2016.00474. eCollection 2016. Review.

10.

Environmental conditions and serotype affect Listeria monocytogenes susceptibility to phage treatment in a laboratory cheese model.

Henderson LO, Cabrera-Villamizar LA, Skeens J, Kent D, Murphy S, Wiedmann M, Guariglia-Oropeza V.

J Dairy Sci. 2019 Aug 30. pii: S0022-0302(19)30748-9. doi: 10.3168/jds.2019-16474. [Epub ahead of print]

PMID:
31477293
11.

Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand.

Vongkamjan K, Benjakul S, Kim Vu HT, Vuddhakul V.

Food Microbiol. 2017 Sep;66:11-19. doi: 10.1016/j.fm.2017.03.014. Epub 2017 Mar 21.

PMID:
28576358
12.

Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States.

Kim JW, Siletzky RM, Kathariou S.

Appl Environ Microbiol. 2008 Nov;74(21):6623-30. doi: 10.1128/AEM.01282-08. Epub 2008 Sep 12.

13.

Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm.

Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN.

J Ind Microbiol Biotechnol. 2013 Oct;40(10):1105-16. doi: 10.1007/s10295-013-1313-3. Epub 2013 Aug 2.

PMID:
23907252
14.

Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C.

Piercey MJ, Hingston PA, Truelstrup Hansen L.

Int J Food Microbiol. 2016 Apr 16;223:63-74. doi: 10.1016/j.ijfoodmicro.2016.02.009. Epub 2016 Feb 11.

PMID:
26900648
15.

Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin.

Kadam SR, den Besten HM, van der Veen S, Zwietering MH, Moezelaar R, Abee T.

Int J Food Microbiol. 2013 Aug 1;165(3):259-64. doi: 10.1016/j.ijfoodmicro.2013.05.025. Epub 2013 Jun 5.

PMID:
23800738
16.
17.

Bacteriophage φEf11 ORF28 Endolysin, a Multifunctional Lytic Enzyme with Properties Distinct from All Other Identified Enterococcus faecalis Phage Endolysins.

Zhang H, Buttaro BA, Fouts DE, Sanjari S, Evans BS, Stevens RH.

Appl Environ Microbiol. 2019 Jun 17;85(13). pii: e00555-19. doi: 10.1128/AEM.00555-19. Print 2019 Jul 1.

PMID:
30979842
18.

The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates.

Schuch R, Pelzek AJ, Nelson DC, Fischetti VA.

Appl Environ Microbiol. 2019 Apr 18;85(9). pii: e00003-19. doi: 10.1128/AEM.00003-19. Print 2019 May 1.

PMID:
30850428
19.

Removal of Listeria monocytogenes biofilms with bacteriophage P100.

Soni KA, Nannapaneni R.

J Food Prot. 2010 Aug;73(8):1519-24.

PMID:
20819365
20.

Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants.

Trudelle DM, Bryan DW, Hudson LK, Denes TG.

Food Microbiol. 2019 Dec;84:103239. doi: 10.1016/j.fm.2019.06.003. Epub 2019 Jun 5.

PMID:
31421769

Supplemental Content

Support Center