Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer.

Montal ED, Bhalla K, Dewi RE, Ruiz CF, Haley JA, Ropell AE, Gordon C, Haley JD, Girnun GD.

Cancer Metab. 2019 Aug 1;7:8. doi: 10.1186/s40170-019-0199-6. eCollection 2019.

2.

PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth.

Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE, Gordon C, Liu WJ, DeBerardinis RJ, Sudderth J, Twaddel W, Boros LG, Shroyer KR, Duraisamy S, Drapkin R, Powers RS, Rohde JM, Boxer MB, Wong KK, Girnun GD.

Mol Cell. 2015 Nov 19;60(4):571-83. doi: 10.1016/j.molcel.2015.09.025. Epub 2015 Oct 17.

3.

The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

Stark R, Kibbey RG.

Biochim Biophys Acta. 2014 Apr;1840(4):1313-30. doi: 10.1016/j.bbagen.2013.10.033. Epub 2013 Oct 28. Review.

4.

PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis.

Méndez-Lucas A, Duarte JA, Sunny NE, Satapati S, He T, Fu X, Bermúdez J, Burgess SC, Perales JC.

J Hepatol. 2013 Jul;59(1):105-13. doi: 10.1016/j.jhep.2013.02.020. Epub 2013 Mar 4.

5.

Metabolic analysis of antibody producing CHO cells in fed-batch production.

Dean J, Reddy P.

Biotechnol Bioeng. 2013 Jun;110(6):1735-47. doi: 10.1002/bit.24826. Epub 2013 Feb 15.

PMID:
23296898
6.

Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth.

Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, Coelho PP, Blagih J, Raissi TC, Choinière L, Bridon G, Loginicheva E, Flynn BR, Thomas EC, Tavaré JM, Avizonis D, Pause A, Elder DJ, Artyomov MN, Jones RG.

Mol Cell. 2015 Oct 15;60(2):195-207. doi: 10.1016/j.molcel.2015.08.013.

7.

In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans.

Vergano SS, Rao M, McCormack S, Ostrovsky J, Clarke C, Preston J, Bennett MJ, Yudkoff M, Xiao R, Falk MJ.

Mol Genet Metab. 2014 Mar;111(3):331-341. doi: 10.1016/j.ymgme.2013.12.011. Epub 2013 Dec 27.

8.

Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase.

Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD.

J Biol Chem. 2004 Nov 19;279(47):48941-9. Epub 2004 Sep 3.

9.

Glucose feeds the TCA cycle via circulating lactate.

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, White E, Rabinowitz JD.

Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.

10.

The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.

Ying M, Guo C, Hu X.

J Biol Chem. 2019 Jun 14;294(24):9615-9630. doi: 10.1074/jbc.RA119.007841. Epub 2019 Apr 30.

PMID:
31040177
11.

Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability.

Méndez-Lucas A, Hyroššová P, Novellasdemunt L, Viñals F, Perales JC.

J Biol Chem. 2014 Aug 8;289(32):22090-102. doi: 10.1074/jbc.M114.566927. Epub 2014 Jun 27.

12.

Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma.

Liu MX, Jin L, Sun SJ, Liu P, Feng X, Cheng ZL, Liu WR, Guan KL, Shi YH, Yuan HX, Xiong Y.

Oncogene. 2018 Mar;37(12):1637-1653. doi: 10.1038/s41388-017-0070-6. Epub 2018 Jan 16.

13.

Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance.

Merritt ME, Harrison C, Sherry AD, Malloy CR, Burgess SC.

Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):19084-9. doi: 10.1073/pnas.1111247108. Epub 2011 Nov 7.

14.

Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models.

Hammami I, Chen J, Murschel F, Bronte V, De Crescenzo G, Jolicoeur M.

BMC Cell Biol. 2012 Jul 4;13:18. doi: 10.1186/1471-2121-13-18.

15.
16.

Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine.

Potts A, Uchida A, Deja S, Berglund ED, Kucejova B, Duarte JA, Fu X, Browning JD, Magnuson MA, Burgess SC.

Am J Physiol Gastrointest Liver Physiol. 2018 Aug 1;315(2):G249-G258. doi: 10.1152/ajpgi.00039.2018. Epub 2018 Apr 6.

17.

The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells.

Leithner K, Triebl A, Trötzmüller M, Hinteregger B, Leko P, Wieser BI, Grasmann G, Bertsch AL, Züllig T, Stacher E, Valli A, Prassl R, Olschewski A, Harris AL, Köfeler HC, Olschewski H, Hrzenjak A.

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6225-6230. doi: 10.1073/pnas.1719871115. Epub 2018 May 29.

18.

PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis.

Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, Xia J, Hu Y, Zhang W, Huang A, Wang K, Tang N.

J Exp Clin Cancer Res. 2019 Feb 4;38(1):50. doi: 10.1186/s13046-019-1029-y.

19.

Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress.

Lamonte G, Tang X, Chen JL, Wu J, Ding CK, Keenan MM, Sangokoya C, Kung HN, Ilkayeva O, Boros LG, Newgard CB, Chi JT.

Cancer Metab. 2013 Dec 23;1(1):23. doi: 10.1186/2049-3002-1-23.

20.

Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor.

Wei L, Zhou Y, Yao J, Qiao C, Ni T, Guo R, Guo Q, Lu N.

Oncotarget. 2015 Jun 30;6(18):16198-214.

Supplemental Content

Support Center