Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.

Valainis D, Dondl P, Foehr P, Burgkart R, Kalkhof S, Duda GN, van Griensven M, Poh PSP.

Biomed Mater. 2019 Sep 9;14(6):065002. doi: 10.1088/1748-605X/ab38c6.

PMID:
31387088
2.

In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA.

Acta Biomater. 2016 Jan;30:319-333. doi: 10.1016/j.actbio.2015.11.012. Epub 2015 Nov 10.

PMID:
26563472
3.

Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.

Castro APG, Ruben RB, Gonçalves SB, Pinheiro J, Guedes JM, Fernandes PR.

Comput Methods Biomech Biomed Engin. 2019 May;22(6):567-573. doi: 10.1080/10255842.2019.1569638. Epub 2019 Feb 18.

PMID:
30773050
4.

Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.

Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, Lee JH, Kim WD, Kwon IK, Park SA.

Acta Biomater. 2016 Aug;40:182-191. doi: 10.1016/j.actbio.2016.02.006. Epub 2016 Feb 8.

PMID:
26868173
5.

Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.

Kelly CN, Francovich J, Julmi S, Safranski D, Guldberg RE, Maier HJ, Gall K.

Acta Biomater. 2019 Aug;94:610-626. doi: 10.1016/j.actbio.2019.05.046. Epub 2019 May 22.

PMID:
31125727
6.

The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds.

Lu Y, Zhao W, Cui Z, Zhu H, Wu C.

J Mech Behav Biomed Mater. 2019 Nov;99:56-65. doi: 10.1016/j.jmbbm.2019.07.012. Epub 2019 Jul 19.

PMID:
31344523
7.

Permeability versus Design in TPMS Scaffolds.

Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR.

Materials (Basel). 2019 Apr 22;12(8). pii: E1313. doi: 10.3390/ma12081313.

8.

Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.

Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S.

Biomaterials. 2005 Aug;26(23):4817-27. Epub 2005 Jan 23.

PMID:
15763261
9.

Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.

Gómez-Lizárraga KK, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C.

Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335. doi: 10.1016/j.msec.2017.05.003. Epub 2017 May 4.

PMID:
28629025
10.

New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

Yoo D.

Med Eng Phys. 2012 Jul;34(6):762-76. doi: 10.1016/j.medengphy.2012.05.008. Epub 2012 Jun 19.

PMID:
22721938
11.

Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.

Roskies M, Jordan JO, Fang D, Abdallah MN, Hier MP, Mlynarek A, Tamimi F, Tran SD.

J Biomater Appl. 2016 Jul;31(1):132-9. doi: 10.1177/0885328216638636. Epub 2016 Mar 14.

PMID:
26980549
12.

Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering.

Schipani R, Nolan DR, Lally C, Kelly DJ.

Connect Tissue Res. 2019 Sep 8:1-16. doi: 10.1080/03008207.2019.1656720. [Epub ahead of print]

PMID:
31495233
13.

Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

Afshar M, Anaraki AP, Montazerian H, Kadkhodapour J.

J Mech Behav Biomed Mater. 2016 Sep;62:481-494. doi: 10.1016/j.jmbbm.2016.05.027. Epub 2016 May 28.

PMID:
27281165
14.

Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix<sup/>.

Nyberg E, Rindone A, Dorafshar A, Grayson WL.

Tissue Eng Part A. 2017 Jun;23(11-12):503-514. doi: 10.1089/ten.TEA.2016.0418. Epub 2017 Feb 7.

PMID:
28027692
15.

Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.

Heo SY, Ko SC, Oh GW, Kim N, Choi IW, Park WS, Jung WK.

J Biomed Mater Res B Appl Biomater. 2019 Aug;107(6):1937-1944. doi: 10.1002/jbm.b.34286. Epub 2018 Dec 3.

PMID:
30508311
16.

Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering.

Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P.

Materials (Basel). 2016 Dec 7;9(12). pii: E992. doi: 10.3390/ma9120992.

18.

Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea.

Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K.

World J Mens Health. 2018 Jan;36(1):66-72. doi: 10.5534/wjmh.17025. Epub 2017 Oct 25.

19.

3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.

Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, Schröder HC, Müller WEG.

Acta Biomater. 2017 Dec;64:377-388. doi: 10.1016/j.actbio.2017.09.031. Epub 2017 Sep 28.

PMID:
28966095
20.

Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration.

Poh PS, Hutmacher DW, Stevens MM, Woodruff MA.

Biofabrication. 2013 Dec;5(4):045005. doi: 10.1088/1758-5082/5/4/045005. Epub 2013 Nov 6. Erratum in: Biofabrication. 2013 Dec;5(4):029501. Biofabrication. 2014 Jun;6(2):029501.

PMID:
24192136

Supplemental Content

Support Center