Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

How a measure of tree structural complexity relates to architectural benefit-to-cost ratio, light availability, and growth of trees.

Seidel D, Annighöfer P, Stiers M, Zemp CD, Burkardt K, Ehbrecht M, Willim K, Kreft H, Hölscher D, Ammer C.

Ecol Evol. 2019 May 26;9(12):7134-7142. doi: 10.1002/ece3.5281. eCollection 2019 Jun.

2.

Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits.

Köcher P, Horna V, Leuschner C.

Tree Physiol. 2013 Aug;33(8):817-32. doi: 10.1093/treephys/tpt055.

PMID:
23999137
3.

Advanced Aboveground Spatial Analysis as Proxy for the Competitive Environment Affecting Sapling Development.

Annighöfer P, Seidel D, Mölder A, Ammer C.

Front Plant Sci. 2019 May 28;10:690. doi: 10.3389/fpls.2019.00690. eCollection 2019.

4.
5.
6.

Environmental drivers interactively affect individual tree growth across temperate European forests.

Maes SL, Perring MP, Vanhellemont M, Depauw L, Van den Bulcke J, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kopecký M, Máliš F, Wulf M, Verheyen K.

Glob Chang Biol. 2019 Jan;25(1):201-217. doi: 10.1111/gcb.14493. Epub 2018 Nov 22.

PMID:
30346104
7.

A holistic approach to determine tree structural complexity based on laser scanning data and fractal analysis.

Seidel D.

Ecol Evol. 2017 Nov 23;8(1):128-134. doi: 10.1002/ece3.3661. eCollection 2018 Jan.

8.

Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying.

Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A.

Tree Physiol. 2016 Dec;36(12):1508-1519. Epub 2016 Sep 8.

PMID:
27609804
9.

Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil.

Brinkmann N, Eugster W, Buchmann N, Kahmen A.

Plant Biol (Stuttg). 2019 Jan;21(1):71-81. doi: 10.1111/plb.12907. Epub 2018 Oct 15.

PMID:
30184305
10.

Response of tree growth and species coexistence to density and species evenness in a young forest plantation with two competing species.

Collet C, Ningre F, Barbeito I, Arnaud A, Piboule A.

Ann Bot. 2014 Mar;113(4):711-9. doi: 10.1093/aob/mct285. Epub 2013 Dec 8.

11.

The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest.

Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED.

Tree Physiol. 2010 Jun;30(6):689-704. doi: 10.1093/treephys/tpq027. Epub 2010 May 7.

PMID:
20453002
12.

Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach.

Genet H, Bréda N, Dufrêne E.

Tree Physiol. 2010 Feb;30(2):177-92. doi: 10.1093/treephys/tpp105. Epub 2009 Dec 16.

PMID:
20018984
13.

Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

Basler D, Körner C.

Tree Physiol. 2014 Apr;34(4):377-88. doi: 10.1093/treephys/tpu021. Epub 2014 Apr 7.

PMID:
24713858
14.

Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2.

Hättenschwiler S.

Oecologia. 2001 Sep;129(1):31-42. doi: 10.1007/s004420100699. Epub 2001 Sep 1.

PMID:
28547065
15.

Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica).

Jacob M, Viedenz K, Polle A, Thomas FM.

Oecologia. 2010 Dec;164(4):1083-94. doi: 10.1007/s00442-010-1699-9. Epub 2010 Jul 2.

16.

Light and competition gradients fail to explain the coexistence of shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings.

Van Couwenberghe R, Gégout JC, Lacombe E, Collet C.

Ann Bot. 2013 Nov;112(7):1421-30. doi: 10.1093/aob/mct200. Epub 2013 Sep 12.

17.

Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium.

André F, Jonard M, Ponette Q.

Sci Total Environ. 2010 May 1;408(11):2285-94. doi: 10.1016/j.scitotenv.2010.02.040. Epub 2010 Mar 15.

PMID:
20231032
18.

Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

Foster JR, Finley AO, D'Amato AW, Bradford JB, Banerjee S.

Glob Chang Biol. 2016 Jun;22(6):2138-51. doi: 10.1111/gcb.13208. Epub 2016 Mar 3.

PMID:
26717889
19.

Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species.

Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F.

Tree Physiol. 2001 Mar;21(4):223-32.

PMID:
11276416
20.

Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species.

Barigah TS, Ibrahim T, Bogard A, Faivre-Vuillin B, Lagneau LA, Montpied P, Dreyer E.

Tree Physiol. 2006 Dec;26(12):1505-16.

PMID:
17169890

Supplemental Content

Support Center