Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Polymer-based ammonium-limited fed-batch cultivation in shake flasks improves lipid productivity of the microalga Chlorella vulgaris.

Keil T, Dittrich B, Rührer J, Morschett H, Lattermann C, Möller M, Büchs J.

Bioresour Technol. 2019 Nov;291:121821. doi: 10.1016/j.biortech.2019.121821. Epub 2019 Jul 16.

PMID:
31352167
2.

Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

Shen QH, Gong YP, Fang WZ, Bi ZC, Cheng LH, Xu XH, Chen HL.

Bioresour Technol. 2015 Oct;193:68-75. doi: 10.1016/j.biortech.2015.06.050. Epub 2015 Jun 16.

PMID:
26117237
3.

Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor.

Frumento D, Aliakbarian B, Casazza AA, Converti A, Al Arni S, da Silva MF.

Biotechnol Prog. 2016 Mar;32(2):279-84. doi: 10.1002/btpr.2218. Epub 2016 Jan 8.

PMID:
26697953
4.

Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy.

Xie T, Xia Y, Zeng Y, Li X, Zhang Y.

Bioresour Technol. 2017 Jun;233:247-255. doi: 10.1016/j.biortech.2017.02.099. Epub 2017 Feb 27.

PMID:
28285215
5.

The enhanced lipid accumulation in oleaginous microalga by the potential continuous nitrogen-limitation (CNL) strategy.

Liu T, Li Y, Liu F, Wang C.

Bioresour Technol. 2016 Mar;203:150-9. doi: 10.1016/j.biortech.2015.12.021. Epub 2015 Dec 17.

PMID:
26724547
6.

Use of diluted urine for cultivation of Chlorella vulgaris.

Jaatinen S, Lakaniemi AM, Rintala J.

Environ Technol. 2016;37(9):1159-70. doi: 10.1080/09593330.2015.1105300. Epub 2015 Nov 7.

PMID:
26508358
7.

Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

Sakarika M, Kornaros M.

Bioresour Technol. 2017 Nov;243:356-365. doi: 10.1016/j.biortech.2017.06.110. Epub 2017 Jun 23.

PMID:
28683389
8.

Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

Yeh KL, Chang JS.

Bioresour Technol. 2012 Feb;105:120-7. doi: 10.1016/j.biortech.2011.11.103. Epub 2011 Dec 2.

PMID:
22189073
9.

Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.

Wong YK, Ho YH, Ho KC, Leung HM, Yung KK.

Environ Sci Pollut Res Int. 2017 Apr;24(10):9089-9101. doi: 10.1007/s11356-016-7792-9. Epub 2016 Dec 14.

PMID:
27975198
10.

Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater.

Chen CY, Chang YH.

J Biosci Bioeng. 2018 Jun;125(6):710-716. doi: 10.1016/j.jbiosc.2018.01.008. Epub 2018 Feb 13.

PMID:
29426801
11.

Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.

Xue L, Shang H, Ma P, Wang X, He X, Niu J, Wu J.

J Basic Microbiol. 2018 Apr;58(4):358-367. doi: 10.1002/jobm.201700594. Epub 2018 Feb 28.

PMID:
29488634
12.

Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask.

Philip P, Kern D, Goldmanns J, Seiler F, Schulte A, Habicher T, Büchs J.

Microb Cell Fact. 2018 May 9;17(1):69. doi: 10.1186/s12934-018-0917-8.

13.

Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.

Adamakis ID, Lazaridis PA, Terzopoulou E, Torofias S, Valari M, Kalaitzi P, Rousonikolos V, Gkoutzikostas D, Zouboulis A, Zalidis G, Triantafyllidis KS.

Environ Sci Pollut Res Int. 2018 Aug;25(23):23018-23032. doi: 10.1007/s11356-018-2368-5. Epub 2018 Jun 1.

PMID:
29859001
14.
15.

Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.

Zheng H, Gao Z, Yin F, Ji X, Huang H.

Bioresour Technol. 2012 Dec;126:24-30. doi: 10.1016/j.biortech.2012.09.048. Epub 2012 Sep 25.

PMID:
23073086
16.

Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.

Zheng H, Gao Z, Yin F, Ji X, Huang H.

Bioresour Technol. 2012 Aug;117:1-6. doi: 10.1016/j.biortech.2012.04.007. Epub 2012 Apr 10.

PMID:
22609706
17.

Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

Sakarika M, Kornaros M.

Bioresour Technol. 2016 Nov;219:694-701. doi: 10.1016/j.biortech.2016.08.033. Epub 2016 Aug 12.

PMID:
27544920
18.

Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

Luangpipat T, Chisti Y.

J Biotechnol. 2017 Sep 10;257:47-57. doi: 10.1016/j.jbiotec.2016.11.029. Epub 2016 Nov 30.

PMID:
27914890
19.

Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains.

Müller J, Hütterott A, Habicher T, Mußmann N, Büchs J.

J Biosci Bioeng. 2019 May 28. pii: S1389-1723(19)30160-4. doi: 10.1016/j.jbiosc.2019.05.003. [Epub ahead of print]

PMID:
31151898
20.

The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris.

Griffiths MJ, van Hille RP, Harrison ST.

Appl Microbiol Biotechnol. 2014 Jul;98(13):6147-59. doi: 10.1007/s00253-014-5757-9. Epub 2014 May 14.

PMID:
24824221

Supplemental Content

Support Center