Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays.

Ho E, Lei X, Flores TA, Lorach H, Huang TW, Galambos L, Kamins T, Harris JS, Mathieson K, Palanker D.

J Neural Eng. 2019 Jul 25. doi: 10.1088/1741-2552/ab34b3. [Epub ahead of print]

PMID:
31341094
2.

Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons.

Flores T, Lei X, Huang T, Lorach H, Dalal R, Galambos L, Kamins T, Mathieson K, Palanker D.

J Neural Eng. 2018 Jun;15(3):036011. doi: 10.1088/1741-2552/aaac39. Epub 2018 Feb 1.

3.

Performance of photovoltaic arrays in-vivo and characteristics of prosthetic vision in animals with retinal degeneration.

Lorach H, Goetz G, Mandel Y, Lei X, Galambos L, Kamins TI, Mathieson K, Huie P, Dalal R, Harris JS, Palanker D.

Vision Res. 2015 Jun;111(Pt B):142-8. doi: 10.1016/j.visres.2014.09.007. Epub 2014 Sep 26. Erratum in: Vision Res. 2015 Dec;117():137. Galambos, Ludwig [Added].

4.

Photovoltaic restoration of sight with high visual acuity.

Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, Mathieson K, Huie P, Harris J, Sher A, Palanker D.

Nat Med. 2015 May;21(5):476-82. doi: 10.1038/nm.3851. Epub 2015 Apr 27.

5.

Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.

Ho E, Smith R, Goetz G, Lei X, Galambos L, Kamins TI, Harris J, Mathieson K, Palanker D, Sher A.

J Neurophysiol. 2018 Feb 1;119(2):389-400. doi: 10.1152/jn.00872.2016. Epub 2017 Oct 18.

6.

Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials.

Mandel Y, Goetz G, Lavinsky D, Huie P, Mathieson K, Wang L, Kamins T, Galambos L, Manivanh R, Harris J, Palanker D.

Nat Commun. 2013;4:1980. doi: 10.1038/ncomms2980.

7.

Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.

Chader GJ, Weiland J, Humayun MS.

Prog Brain Res. 2009;175:317-32. doi: 10.1016/S0079-6123(09)17522-2. Review.

PMID:
19660665
8.

Honeycomb-shaped electro-neural interface enables cellular-scale pixels in subretinal prosthesis.

Flores T, Huang T, Bhuckory M, Ho E, Chen Z, Dalal R, Galambos L, Kamins T, Mathieson K, Palanker D.

Sci Rep. 2019 Jul 23;9(1):10657. doi: 10.1038/s41598-019-47082-y.

9.

Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration.

Lorach H, Lei X, Galambos L, Kamins T, Mathieson K, Dalal R, Huie P, Harris J, Palanker D.

Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7444-50. doi: 10.1167/iovs.15-17521.

10.

Local signaling from a retinal prosthetic in a rodent retinitis pigmentosa model in vivo.

Fransen JW, Pangeni G, Pardue MT, McCall MA.

J Neural Eng. 2014 Aug;11(4):046012. doi: 10.1088/1741-2560/11/4/046012. Epub 2014 Jun 18.

11.

Modeling the Improved Visual Acuity Using Photodiode Based Retinal Implants Featuring Fractal Electrodes.

Watterson WJ, Montgomery RD, Taylor RP.

Front Neurosci. 2018 Apr 24;12:277. doi: 10.3389/fnins.2018.00277. eCollection 2018.

12.

Design of a high-resolution optoelectronic retinal prosthesis.

Palanker D, Vankov A, Huie P, Baccus S.

J Neural Eng. 2005 Mar;2(1):S105-20. Epub 2005 Feb 22.

PMID:
15876646
13.

Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.

Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D.

Invest Ophthalmol Vis Sci. 2003 Dec;44(12):5355-61.

PMID:
14638738
14.

Effect of shape and coating of a subretinal prosthesis on its integration with the retina.

Butterwick A, Huie P, Jones BW, Marc RE, Marmor M, Palanker D.

Exp Eye Res. 2009 Jan;88(1):22-9. doi: 10.1016/j.exer.2008.09.018. Epub 2008 Oct 10.

PMID:
18955050
15.

Intraocular retinal prosthesis.

Humayun MS.

Trans Am Ophthalmol Soc. 2001;99:271-300.

16.

In Vivo Photovoltaic Performance of a Silicon Nanowire Photodiode-Based Retinal Prosthesis.

Bosse B, Damle S, Akinin A, Jing Y, Bartsch DU, Cheng L, Oesch N, Lo YH, Cauwenberghs G, Freeman WR.

Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5885-5892. doi: 10.1167/iovs.18-24554.

17.

Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.

Jensen RJ.

Exp Eye Res. 2012 Jun;99:71-7. doi: 10.1016/j.exer.2012.03.016. Epub 2012 Apr 20.

PMID:
22542904
18.

Photovoltaic Retinal Prosthesis with High Pixel Density.

Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, Galambos L, Smith R, Harris JS, Sher A, Palanker D.

Nat Photonics. 2012 Jun 1;6(6):391-397. Epub 2012 May 13.

19.

Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

Boinagrov D, Lei X, Goetz G, Kamins TI, Mathieson K, Galambos L, Harris JS Jr, Palanker D.

IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):85-97. doi: 10.1109/TBCAS.2014.2376528. Epub 2015 Jan 23.

20.

Electronic approaches to restoration of sight.

Goetz GA, Palanker DV.

Rep Prog Phys. 2016 Sep;79(9):096701. doi: 10.1088/0034-4885/79/9/096701. Epub 2016 Aug 9. Review.

Supplemental Content

Support Center