Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Interleukin-12 and -23 blockade mitigates elastase-induced abdominal aortic aneurysm.

Yan H, Hu Y, Akk A, Ye K, Bacon J, Pham CTN.

Sci Rep. 2019 Jul 18;9(1):10447. doi: 10.1038/s41598-019-46909-y.

2.

Chemokine (C-X-C motif) receptor 4 blockade by AMD3100 inhibits experimental abdominal aortic aneurysm expansion through anti-inflammatory effects.

Michineau S, Franck G, Wagner-Ballon O, Dai J, Allaire E, Gervais M.

Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1747-55. doi: 10.1161/ATVBAHA.114.303913. Epub 2014 May 29.

PMID:
24876351
3.

Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment.

Sharma AK, Lu G, Jester A, Johnston WF, Zhao Y, Hajzus VA, Saadatzadeh MR, Su G, Bhamidipati CM, Mehta GS, Kron IL, Laubach VE, Murphy MP, Ailawadi G, Upchurch GR Jr.

Circulation. 2012 Sep 11;126(11 Suppl 1):S38-45. Erratum in: Circulation. 2012 Oct 23;126(17):e278.

4.

IL-6: A Janus-like factor in abdominal aortic aneurysm disease.

Kokje VBC, Gäbel G, Koole D, Northoff BH, Holdt LM, Hamming JF, Lindeman JHN.

Atherosclerosis. 2016 Aug;251:139-146. doi: 10.1016/j.atherosclerosis.2016.06.021. Epub 2016 Jun 11.

5.

An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis.

Toichi E, Torres G, McCormick TS, Chang T, Mascelli MA, Kauffman CL, Aria N, Gottlieb AB, Everitt DE, Frederick B, Pendley CE, Cooper KD.

J Immunol. 2006 Oct 1;177(7):4917-26.

6.

High-mobility group box 1 protein blockade suppresses development of abdominal aortic aneurysm.

Kohno T, Anzai T, Kaneko H, Sugano Y, Shimizu H, Shimoda M, Miyasho T, Okamoto M, Yokota H, Yamada S, Yoshikawa T, Okada Y, Yozu R, Ogawa S, Fukuda K.

J Cardiol. 2012 May;59(3):299-306. doi: 10.1016/j.jjcc.2012.01.007. Epub 2012 Feb 24.

7.

The pro-inflammatory and chemotactic cytokine microenvironment of the abdominal aortic aneurysm wall: a protein array study.

Middleton RK, Lloyd GM, Bown MJ, Cooper NJ, London NJ, Sayers RD.

J Vasc Surg. 2007 Mar;45(3):574-80.

9.

The pathophysiology of abdominal aortic aneurysm growth: corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms.

Abdul-Hussien H, Hanemaaijer R, Kleemann R, Verhaaren BF, van Bockel JH, Lindeman JH.

J Vasc Surg. 2010 Jun;51(6):1479-87. doi: 10.1016/j.jvs.2010.01.057.

10.

IL-1β (Interleukin-1β) and TNF-α (Tumor Necrosis Factor-α) Impact Abdominal Aortic Aneurysm Formation by Differential Effects on Macrophage Polarization.

Batra R, Suh MK, Carson JS, Dale MA, Meisinger TM, Fitzgerald M, Opperman PJ, Luo J, Pipinos II, Xiong W, Baxter BT.

Arterioscler Thromb Vasc Biol. 2018 Feb;38(2):457-463. doi: 10.1161/ATVBAHA.117.310333. Epub 2017 Dec 7.

PMID:
29217508
11.

Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms.

Sharma AK, Salmon MD, Lu G, Su G, Pope NH, Smith JR, Weiss ML, Upchurch GR Jr.

Arterioscler Thromb Vasc Biol. 2016 May;36(5):908-18. doi: 10.1161/ATVBAHA.116.307373. Epub 2016 Mar 17.

12.

Blocking TNF-alpha attenuates aneurysm formation in a murine model.

Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y, Baxter BT.

J Immunol. 2009 Aug 15;183(4):2741-6. doi: 10.4049/jimmunol.0803164. Epub 2009 Jul 20.

13.

Interleukin-5 is a potential mediator of angiotensin II-induced aneurysm formation in apolipoprotein E knockout mice.

Xu J, Ehrman B, Graham LM, Eagleton MJ.

J Surg Res. 2012 Nov;178(1):512-8. doi: 10.1016/j.jss.2011.12.016. Epub 2012 Mar 10.

14.

Genetic and pharmacologic disruption of interleukin-1β signaling inhibits experimental aortic aneurysm formation.

Johnston WF, Salmon M, Su G, Lu G, Stone ML, Zhao Y, Owens GK, Upchurch GR Jr, Ailawadi G.

Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):294-304. doi: 10.1161/ATVBAHA.112.300432. Epub 2013 Jan 3.

15.

Resveratrol counteracts systemic and local inflammation involved in early abdominal aortic aneurysm development.

Palmieri D, Pane B, Barisione C, Spinella G, Garibaldi S, Ghigliotti G, Brunelli C, Fulcheri E, Palombo D.

J Surg Res. 2011 Dec;171(2):e237-46. doi: 10.1016/j.jss.2011.07.041. Epub 2011 Aug 24.

PMID:
21962734
16.

Inhibition of EP4 signaling attenuates aortic aneurysm formation.

Yokoyama U, Ishiwata R, Jin MH, Kato Y, Suzuki O, Jin H, Ichikawa Y, Kumagaya S, Katayama Y, Fujita T, Okumura S, Sato M, Sugimoto Y, Aoki H, Suzuki S, Masuda M, Minamisawa S, Ishikawa Y.

PLoS One. 2012;7(5):e36724. doi: 10.1371/journal.pone.0036724. Epub 2012 May 3.

17.

Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation.

Yan H, Zhou HF, Akk A, Hu Y, Springer LE, Ennis TL, Pham CTN.

Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1660-1669. doi: 10.1161/ATVBAHA.116.307786. Epub 2016 Jun 9.

18.

Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion.

Li G, Qin L, Wang L, Li X, Caulk AW, Zhang J, Chen PY, Xin S.

Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1110-H1119. doi: 10.1152/ajpheart.00677.2016. Epub 2017 Feb 17.

19.

Di-(2-ethylhexyl) phthalate suppresses IL-12p40 production by GM-CSF-dependent macrophages via the PPARα/TNFAIP3/TRAF6 axis after lipopolysaccharide stimulation.

Yamaguchi R, Sakamoto A, Yamamoto T, Narahara S, Sugiuchi H, Hisada A, Katoh T, Yamaguchi Y.

Hum Exp Toxicol. 2018 Jun;37(6):596-607. doi: 10.1177/0960327117714038. Epub 2017 Jul 3.

PMID:
28673093
20.

Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms.

Sho E, Sho M, Nanjo H, Kawamura K, Masuda H, Dalman RL.

J Vasc Surg. 2005 May;41(5):844-52.

Supplemental Content

Support Center