Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Ultrahigh-resolution spectrometer based on 19 integrated gratings.

Jiang AQ, Zang KY, Tu HT, Chen JK, Lu WJ, Yoshie O, Wang XP, Xiang XD, Lee YP, Chen B, Zheng YX, Wang SY, Zhao HB, Yang YM, Chen LY.

Sci Rep. 2019 Jul 15;9(1):10211. doi: 10.1038/s41598-019-46792-7.

2.

A High-Performance Spectrometer with Two Spectral Channels Sharing the Same BSI-CMOS Detector.

Zang KY, Yao Y, Hu ET, Jiang AQ, Zheng YX, Wang SY, Zhao HB, Yang YM, Yoshie O, Lee YP, Lynch DW, Chen LY.

Sci Rep. 2018 Aug 23;8(1):12660. doi: 10.1038/s41598-018-31124-y.

3.

Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

Arvanitis CD, Bohndiek SE, Royle G, Blue A, Liang HX, Clark A, Prydderch M, Turchetta R, Speller R.

Med Phys. 2007 Dec;34(12):4612-25.

PMID:
18196789
4.

Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution.

Chen YR, Sun B, Han T, Kong YF, Xu CH, Zhou P, Li XF, Wang SY, Zheng YX, Chen LY.

Opt Express. 2005 Dec 12;13(25):10049-54.

PMID:
19503216
5.

Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

Vedantham S, Shrestha S, Karellas A, Shi L, Gounis MJ, Bellazzini R, Spandre G, Brez A, Minuti M.

Med Phys. 2016 May;43(5):2118. doi: 10.1118/1.4944868.

6.

Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

Barber WC, Wessel JC, Nygard E, Iwanczyk JS.

Nucl Instrum Methods Phys Res A. 2015 Jun 1;784:531-537.

7.

Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

Zhao C, Vassiljev N, Konstantinidis AC, Speller RD, Kanicki J.

Phys Med Biol. 2017 Mar 7;62(5):1994-2017. doi: 10.1088/1361-6560/aa586c. Epub 2017 Jan 10.

PMID:
28072394
8.

Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers.

Gaigalas AK, Wang L, He HJ, DeRose P.

J Res Natl Inst Stand Technol. 2009 Aug 1;114(4):215-28. Print 2009 Jul-Aug.

9.

Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

Yang JR, Lee WJ, Han ST.

Sensors (Basel). 2016 Mar 2;16(3). pii: E319. doi: 10.3390/s16030319.

10.

Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

Cao Q, Sisniega A, Brehler M, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W.

Med Phys. 2018 Jan;45(1):114-130. doi: 10.1002/mp.12654. Epub 2017 Nov 27.

11.

High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas.

Brown CM, Seely JF, Feldman U, Holland GE, Weaver JL, Obenschain SP, Kjornrattanawanich B, Fielding D.

Rev Sci Instrum. 2008 Oct;79(10):103109. doi: 10.1063/1.3000685.

PMID:
19044704
12.

Single-shot on-chip spectral sensors based on photonic crystal slabs.

Wang Z, Yi S, Chen A, Zhou M, Luk TS, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang KX, Kats MA, Yu Z.

Nat Commun. 2019 Mar 4;10(1):1020. doi: 10.1038/s41467-019-08994-5.

13.

Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array.

Maccarone A, Mattioli Della Rocca F, McCarthy A, Henderson R, Buller GS.

Opt Express. 2019 Sep 30;27(20):28437-28456. doi: 10.1364/OE.27.028437.

PMID:
31684596
14.

[Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

Li YY, Fang YH, Li DC, Liu Y.

Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Mar;35(3):841-5. Chinese.

PMID:
26117908
15.

CMOS Image Sensors for High Speed Applications.

El-Desouki M, Deen MJ, Fang Q, Liu L, Tse F, Armstrong D.

Sensors (Basel). 2009;9(1):430-44. doi: 10.3390/s90100430. Epub 2009 Jan 13.

16.

Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

Zhou Q, Pang J, Li X, Ni K, Tian R.

Appl Opt. 2015 Nov 10;54(32):9450-5. doi: 10.1364/AO.54.009450.

PMID:
26560772
17.

Long-range depth imaging using a single-photon detector array and non-local data fusion.

Chan S, Halimi A, Zhu F, Gyongy I, Henderson RK, Bowman R, McLaughlin S, Buller GS, Leach J.

Sci Rep. 2019 May 30;9(1):8075. doi: 10.1038/s41598-019-44316-x.

18.

Long scan depth optical coherence tomography on imaging accommodation: impact of enhanced axial resolution, signal-to-noise ratio and speed.

Shao Y, Tao A, Jiang H, Shen M, Zhu D, Lu F, Karp CL, Ye Y, Wang J.

Eye Vis (Lond). 2018 Jul 9;5:16. doi: 10.1186/s40662-018-0111-4. eCollection 2018.

19.

[Development of a High Spectral Resolution UV Flat-Field Spectrograph].

Du LL, Du XW, Li CY, An N, Wang QP.

Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Jun;35(6):1751-5. Chinese.

PMID:
26601403
20.

High-resolution two-grating spectrometer for dual wavelength spectral imaging.

Gornushkin IB, Omenetto N, Smith BW, Winefordner JD.

Appl Spectrosc. 2004 Nov;58(11):1341-6.

PMID:
18070408

Supplemental Content

Support Center