Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

A Roadmap for Lowering Crop Nitrogen Requirement.

Swarbreck SM, Wang M, Wang Y, Kindred D, Sylvester-Bradley R, Shi W, Varinderpal-Singh, Bentley AR, Griffiths H.

Trends Plant Sci. 2019 Oct;24(10):892-904. doi: 10.1016/j.tplants.2019.06.006. Epub 2019 Jul 5. Review.

PMID:
31285127
2.

Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system.

Yao Z, Yan G, Zheng X, Wang R, Liu C, Butterbach-Bahl K.

Environ Pollut. 2017 Dec;231(Pt 1):929-941. doi: 10.1016/j.envpol.2017.08.108. Epub 2017 Sep 25.

PMID:
28888212
3.

Genetic variation in traits for nitrogen use efficiency in wheat.

Hawkesford MJ.

J Exp Bot. 2017 May 1;68(10):2627-2632. doi: 10.1093/jxb/erx079. Review.

PMID:
28338945
4.

Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max).

Langeroodi ARS, Adewale Osipitan O, Radicetti E.

Sci Total Environ. 2019 Apr 10;660:1593-1601. doi: 10.1016/j.scitotenv.2019.01.074. Epub 2019 Jan 8.

PMID:
30743950
5.

Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: A case study in wheat-maize cropping systems in China.

Li S, Lei Y, Zhang Y, Liu J, Shi X, Jia H, Wang C, Chen F, Chu Q.

Sci Total Environ. 2019 Aug 20;679:328-336. doi: 10.1016/j.scitotenv.2019.05.085. Epub 2019 May 8.

PMID:
31100561
6.

Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation.

Du YD, Gu XB, Wang JW, Niu WQ.

Sci Total Environ. 2019 Jun 10;668:1156-1164. doi: 10.1016/j.scitotenv.2019.03.098. Epub 2019 Mar 8.

PMID:
31018455
7.

Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review.

Wu W, Ma B.

Sci Total Environ. 2015 Apr 15;512-513:415-427. doi: 10.1016/j.scitotenv.2014.12.101. Epub 2015 Jan 30. Review.

PMID:
25644838
8.

Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study.

Gao B, Ju X, Su F, Meng Q, Oenema O, Christie P, Chen X, Zhang F.

Sci Total Environ. 2014 Feb 15;472:112-24. doi: 10.1016/j.scitotenv.2013.11.003. Epub 2013 Nov 27.

PMID:
24291136
9.

Greenhouse gas mitigation potential of balanced fertilization cropland under double-cropping systems: a case study in Shaanxi province, China.

Li C, Li C, Han J, Zhang J, Wang Y, Yang F, Wen X, Liao Y.

Environ Monit Assess. 2019 Jan 21;191(2):90. doi: 10.1007/s10661-019-7203-z.

PMID:
30666420
10.

Optimizing rice yields while minimizing yield-scaled global warming potential.

Pittelkow CM, Adviento-Borbe MA, van Kessel C, Hill JE, Linquist BA.

Glob Chang Biol. 2014 May;20(5):1382-93. doi: 10.1111/gcb.12413. Epub 2014 Feb 24. Review.

PMID:
24115565
11.

Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

Thorburn PJ, Biggs JS, Palmer J, Meier EA, Verburg K, Skocaj DM.

Front Plant Sci. 2017 Sep 5;8:1504. doi: 10.3389/fpls.2017.01504. eCollection 2017.

12.

Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

An N, Fan M, Zhang F, Christie P, Yang J, Huang J, Guo S, Shi X, Tang Q, Peng J, Zhong X, Sun Y, Lv S, Jiang R, Dobermann A.

PLoS One. 2015 Oct 9;10(10):e0140023. doi: 10.1371/journal.pone.0140023. eCollection 2015.

13.

Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape.

Stahl A, Pfeifer M, Frisch M, Wittkop B, Snowdon RJ.

Front Plant Sci. 2017 Jun 7;8:963. doi: 10.3389/fpls.2017.00963. eCollection 2017.

14.

Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain.

Yao Z, Yan G, Zheng X, Wang R, Liu C, Butterbach-Bahl K.

Sci Total Environ. 2017 Jul 15;590-591:174-185. doi: 10.1016/j.scitotenv.2017.02.194. Epub 2017 Mar 3.

PMID:
28262361
15.

Nitrogen-efficient rice cultivars can reduce nitrate pollution.

Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M.

Environ Sci Pollut Res Int. 2011 Aug;18(7):1184-93. doi: 10.1007/s11356-010-0434-8. Epub 2011 Feb 26. Erratum in: Environ Sci Pollut Res Int. 2012 Feb;19(2):607.

PMID:
21359512
16.

Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.

Dobermann A, Cassman KG.

Sci China C Life Sci. 2005 Sep;48 Suppl 2:745-58. doi: 10.1007/BF03187115.

PMID:
20549431
17.

Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption.

Dobermann A, Cassman KG.

Sci China C Life Sci. 2005 Dec;48 Spec No:745-58.

PMID:
16512198
18.

Reducing the reliance on nitrogen fertilizer for wheat production.

Hawkesford MJ.

J Cereal Sci. 2014 May;59(3):276-283. Review.

19.

Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

Meier EA, Thorburn PJ.

Front Plant Sci. 2016 Jul 12;7:1017. doi: 10.3389/fpls.2016.01017. eCollection 2016.

20.

The Genetics of Nitrogen Use Efficiency in Crop Plants.

Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG.

Annu Rev Genet. 2015;49:269-89. doi: 10.1146/annurev-genet-112414-055037. Epub 2015 Sep 29. Review.

PMID:
26421509

Supplemental Content

Support Center