Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Upregulation of microRNA-205 is a potential biomarker for intracranial aneurysms.

Zhong Z, Wu J, Yuan K, Song Z, Ma Z, Zhong Y, Fang X, Zhang W.

Neuroreport. 2019 Aug 14;30(12):812-816. doi: 10.1097/WNR.0000000000001279.

PMID:
31283712
2.

Long non-coding RNA HIF1A-AS1 is upregulated in intracranial aneurysms and participates in the regulation of proliferation of vascular smooth muscle cells by upregulating TGF-β1.

Xu J, Zhang Y, Chu L, Chen W, Du Y, Gu J.

Exp Ther Med. 2019 Mar;17(3):1797-1801. doi: 10.3892/etm.2018.7144. Epub 2018 Dec 28.

3.

Novel role for endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms.

Peña-Silva RA, Chalouhi N, Wegman-Points L, Ali M, Mitchell I, Pierce GL, Chu Y, Ballas ZK, Heistad D, Hasan D.

Hypertension. 2015 Mar;65(3):587-93. doi: 10.1161/HYPERTENSIONAHA.114.04681. Epub 2014 Dec 15.

4.

The study of endogenous hepatocyte growth factor in the pathogenesis of intracranial aneurysms.

Yu LL, Liu YJ, Wang ZH, Shi L, Liu LX.

Eur Rev Med Pharmacol Sci. 2017 Feb;21(4):795-803. Retraction in: Eur Rev Med Pharmacol Sci. 2017 Mar;21(6):1176.

5.

Genome-wide microRNA changes in human intracranial aneurysms.

Liu D, Han L, Wu X, Yang X, Zhang Q, Jiang F.

BMC Neurol. 2014 Oct 10;14:188. doi: 10.1186/s12883-014-0188-x.

6.

Circulating microRNA: a novel potential biomarker for early diagnosis of intracranial aneurysm rupture a case control study.

Jin H, Li C, Ge H, Jiang Y, Li Y.

J Transl Med. 2013 Nov 27;11:296. doi: 10.1186/1479-5876-11-296.

7.

MicroRNA and gene expression changes in unruptured human cerebral aneurysms.

Bekelis K, Kerley-Hamilton JS, Teegarden A, Tomlinson CR, Kuintzle R, Simmons N, Singer RJ, Roberts DW, Kellis M, Hendrix DA.

J Neurosurg. 2016 Dec;125(6):1390-1399. Epub 2016 Feb 26.

9.

Prevalence of Intracranial Aneurysms in Patients with Aortic Aneurysms.

Rouchaud A, Brandt MD, Rydberg AM, Kadirvel R, Flemming K, Kallmes DF, Brinjikji W.

AJNR Am J Neuroradiol. 2016 Sep;37(9):1664-8. doi: 10.3174/ajnr.A4827. Epub 2016 Jun 2.

10.

A comparison of genetic chromosomal loci for intracranial, thoracic aortic, and abdominal aortic aneurysms in search of common genetic risk factors.

Ruigrok YM, Elias R, Wijmenga C, Rinkel GJ.

Cardiovasc Pathol. 2008 Jan-Feb;17(1):40-7. Epub 2007 Jul 24. Review.

PMID:
18160059
11.

Prevalence of Intracranial Aneurysms in Patients with Aortic Dissection.

Jung WS, Kim JH, Ahn SJ, Song SW, Kim BM, Seo KD, Suh SH.

AJNR Am J Neuroradiol. 2017 Nov;38(11):2089-2093. doi: 10.3174/ajnr.A5359. Epub 2017 Sep 7.

12.

[The role of endogenous miRNAs in the development of cerebral aneurysms].

Gareev IF, Safin SM.

Zh Vopr Neirokhir Im N N Burdenko. 2019;83(1):112-118. doi: 10.17116/neiro201983011112. Review. Russian.

PMID:
30900695
13.

Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms.

Venkatesh P, Phillippi J, Chukkapalli S, Rivera-Kweh M, Velsko I, Gleason T, VanRyzin P, Aalaei-Andabili SH, Ghanta RK, Beaver T, Chan EKL, Kesavalu L.

Int J Mol Sci. 2017 Apr 20;18(4). pii: E875. doi: 10.3390/ijms18040875.

14.

VEGF plasma levels in non-ruptured intracranial aneurysms.

Sandalcioglu IE, Wende D, Eggert A, Regel JP, Stolke D, Wiedemayer H.

Neurosurg Rev. 2006 Jan;29(1):26-9. Epub 2005 Aug 25.

PMID:
16133453
15.

Risk factors for the association of intracranial and aortic aneurysms.

Miyazawa N, Akiyama I, Yamagata Z.

Acta Neurochir (Wien). 2007 Mar;149(3):221-9; discussion 229. Epub 2007 Feb 2.

PMID:
17273890
16.

A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms.

Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J.

Atherosclerosis. 2017 Jun;261:78-89. doi: 10.1016/j.atherosclerosis.2017.03.010. Epub 2017 Mar 8. Review.

PMID:
28347473
17.

Potential role of granulocyte-monocyte colony-stimulating factor in the progression of intracranial aneurysms.

Chalouhi N, Theofanis T, Starke RM, Zanaty M, Jabbour P, Dooley SA, Hasan D.

DNA Cell Biol. 2015 Jan;34(1):78-81. doi: 10.1089/dna.2014.2618.

18.

The transforming growth factor-β receptor genes and the risk of intracranial aneurysms.

Ruigrok YM, Baas AF, Medic J, Wijmenga C, Rinkel GJ.

Int J Stroke. 2012 Dec;7(8):645-8. doi: 10.1111/j.1747-4949.2011.00615.x. Epub 2011 Oct 6.

PMID:
21978186
19.

Molecular basis and genetic predisposition to intracranial aneurysm.

Tromp G, Weinsheimer S, Ronkainen A, Kuivaniemi H.

Ann Med. 2014 Dec;46(8):597-606. doi: 10.3109/07853890.2014.949299. Epub 2014 Aug 12. Review.

20.

The role of inflammation and potential pharmacological therapy in intracranial aneurysms.

Gruszka W, Zbroszczyk M, Komenda J, Gruszczyńska K, Baron J.

Neurol Neurochir Pol. 2018 Nov - Dec;52(6):662-669. doi: 10.1016/j.pjnns.2018.08.002. Epub 2018 Aug 17. Review.

PMID:
30190209

Supplemental Content

Support Center