Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing.

Luo F, Cai JH, Kong XM, Zhou Q, Zhou X, Zhao YB, Ji SJ.

Hortic Res. 2019 Jun 1;6:74. doi: 10.1038/s41438-019-0155-1. eCollection 2019.

2.

Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing.

Luo F, Cheng SC, Cai JH, Wei BD, Zhou X, Zhou Q, Zhao YB, Ji SJ.

Food Chem. 2019 Nov 1;297:124964. doi: 10.1016/j.foodchem.2019.124964. Epub 2019 Jun 8.

PMID:
31253313
3.

Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing.

Liu MS, Li HC, Lai YM, Lo HF, Chen LF.

J Proteomics. 2013 Nov 20;93:133-44. doi: 10.1016/j.jprot.2013.05.014. Epub 2013 May 23.

4.

Comparative transcriptome analysis provides global insight into gene expression differences between two orchid cultivars.

Jiang Y, Song HY, He JR, Wang Q, Liu J.

PLoS One. 2018 Jul 5;13(7):e0200155. doi: 10.1371/journal.pone.0200155. eCollection 2018.

5.

[Effects of Red Light-Emitting Diode (LED) on the Postharvest Yellowing Change of Broccoli].

Zhang N, Yan RX, Guan WQ, Wang C.

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Apr;36(4):955-9. Chinese.

PMID:
30048089
6.

Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes.

Luo J, Shi Q, Niu L, Zhang Y.

Molecules. 2017 Feb 20;22(2). pii: E324. doi: 10.3390/molecules22020324.

7.

Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis.

Ye J, Hu T, Yang C, Li H, Yang M, Ijaz R, Ye Z, Zhang Y.

PLoS One. 2015 Jul 2;10(7):e0130885. doi: 10.1371/journal.pone.0130885. eCollection 2015.

8.

Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis.

He Y, Ma Y, Du Y, Shen S.

BMC Genomics. 2018 Dec 13;19(1):916. doi: 10.1186/s12864-018-5337-y.

9.

Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar.

Wang L, Yue C, Cao H, Zhou Y, Zeng J, Yang Y, Wang X.

BMC Plant Biol. 2014 Dec 10;14:352. doi: 10.1186/s12870-014-0352-x.

10.

Complementary RNA-Sequencing Based Transcriptomics and iTRAQ Proteomics Reveal the Mechanism of the Alleviation of Quinclorac Stress by Salicylic Acid in Oryza sativa ssp. japonica.

Wang J, Islam F, Li L, Long M, Yang C, Jin X, Ali B, Mao B, Zhou W.

Int J Mol Sci. 2017 Sep 14;18(9). pii: E1975. doi: 10.3390/ijms18091975.

11.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets.

Ma Q, Yang J.

Genes Genomics. 2018 Dec;40(12):1287-1300. doi: 10.1007/s13258-018-0723-z. Epub 2018 Aug 2.

PMID:
30073563
12.

Molecular and biochemical characterization of postharvest senescence in broccoli.

Page T, Griffiths G, Buchanan-Wollaston V.

Plant Physiol. 2001 Feb;125(2):718-27.

13.

Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).

Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ.

BMC Genomics. 2015 Jul 29;16:560. doi: 10.1186/s12864-015-1773-0.

14.

Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development.

Guo F, Guo Y, Wang P, Wang Y, Ni D.

Planta. 2017 Dec;246(6):1139-1152. doi: 10.1007/s00425-017-2760-2. Epub 2017 Aug 19.

PMID:
28825226
15.

Transcriptional and physiological analyses of short-term Iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis.

Wang YX, Hu Y, Zhu YF, Baloch AW, Jia XM, Guo AX.

BMC Genomics. 2018 Jun 15;19(1):461. doi: 10.1186/s12864-018-4846-z.

16.

Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors.

Peng X, Wu Q, Teng L, Tang F, Pi Z, Shen S.

BMC Plant Biol. 2015 Apr 19;15:108. doi: 10.1186/s12870-015-0489-2.

17.

A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation.

Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC.

New Phytol. 2019 Jan;221(1):309-325. doi: 10.1111/nph.15362. Epub 2018 Aug 1.

18.

Ectopic Overexpression of bol-miR171b Increases Chlorophyll Content and Results in Sterility in Broccoli ( Brassica oleracea L var. italica).

Li H, Zhang Q, Li L, Yuan J, Wang Y, Wu M, Han Z, Liu M, Chen C, Song W, Wang C.

J Agric Food Chem. 2018 Sep 19;66(37):9588-9597. doi: 10.1021/acs.jafc.8b01531. Epub 2018 Sep 6.

PMID:
30142272
19.
20.

Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation.

Jin SW, Rahim MA, Afrin KS, Park JI, Kang JG, Nou IS.

BMC Genomics. 2018 Nov 6;19(1):797. doi: 10.1186/s12864-018-5199-3.

Supplemental Content

Support Center