Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming.

Zhou Y, Liu Z, Welch JD, Gao X, Wang L, Garbutt T, Keepers B, Ma H, Prins JF, Shen W, Liu J, Qian L.

Cell Stem Cell. 2019 Jul 3;25(1):149-164.e9. doi: 10.1016/j.stem.2019.05.020. Epub 2019 Jun 20.

PMID:
31230860
2.

Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.

Liu Z, Wang L, Welch JD, Ma H, Zhou Y, Vaseghi HR, Yu S, Wall JB, Alimohamadi S, Zheng M, Yin C, Shen W, Prins JF, Liu J, Qian L.

Nature. 2017 Nov 2;551(7678):100-104. doi: 10.1038/nature24454. Epub 2017 Oct 25.

3.

Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.

Liu Z, Chen O, Zheng M, Wang L, Zhou Y, Yin C, Liu J, Qian L.

Stem Cell Res. 2016 Mar;16(2):507-18. doi: 10.1016/j.scr.2016.02.037. Epub 2016 Feb 27.

4.

Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

Zhao T, Fu Y, Zhu J, Liu Y, Zhang Q, Yi Z, Chen S, Jiao Z, Xu X, Xu J, Duo S, Bai Y, Tang C, Li C, Deng H.

Cell Stem Cell. 2018 Jul 5;23(1):31-45.e7. doi: 10.1016/j.stem.2018.05.025. Epub 2018 Jun 21.

5.

Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming.

Talkhabi M, Razavi SM, Salari A.

J Cell Commun Signal. 2017 Jun;11(2):193-204. doi: 10.1007/s12079-017-0387-5. Epub 2017 Apr 4.

6.

Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq.

Guo L, Lin L, Wang X, Gao M, Cao S, Mai Y, Wu F, Kuang J, Liu H, Yang J, Chu S, Song H, Li D, Liu Y, Wu K, Liu J, Wang J, Pan G, Hutchins AP, Liu J, Pei D, Chen J.

Mol Cell. 2019 Feb 21;73(4):815-829.e7. doi: 10.1016/j.molcel.2019.01.042. Epub 2019 Feb 13.

PMID:
30772174
7.

Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S, Neff NF, Skotheim JM, Wernig M, Quake SR.

Nature. 2016 Jun 16;534(7607):391-5. doi: 10.1038/nature18323. Epub 2016 Jun 8.

8.

Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors.

Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M.

Stem Cells. 2014 Aug;32(8):2178-87. doi: 10.1002/stem.1721.

9.

Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts.

Liu L, Lei I, Karatas H, Li Y, Wang L, Gnatovskiy L, Dou Y, Wang S, Qian L, Wang Z.

Cell Discov. 2016 Oct 11;2:16036. eCollection 2016.

10.

Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.

Bektik E, Dennis A, Prasanna P, Madabhushi A, Fu JD.

PLoS One. 2017 Aug 10;12(8):e0183000. doi: 10.1371/journal.pone.0183000. eCollection 2017.

11.

Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome.

Cacchiarelli D, Qiu X, Srivatsan S, Manfredi A, Ziller M, Overbey E, Grimaldi A, Grimsby J, Pokharel P, Livak KJ, Li S, Meissner A, Mikkelsen TS, Rinn JL, Trapnell C.

Cell Syst. 2018 Sep 26;7(3):258-268.e3. doi: 10.1016/j.cels.2018.07.006. Epub 2018 Sep 5.

12.

A Loss of Function Screen of Epigenetic Modifiers and Splicing Factors during Early Stage of Cardiac Reprogramming.

Zhou Y, Alimohamadi S, Wang L, Liu Z, Wall JB, Yin C, Liu J, Qian L.

Stem Cells Int. 2018 Mar 18;2018:3814747. doi: 10.1155/2018/3814747. eCollection 2018.

13.

Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo.

Dal-Pra S, Hodgkinson CP, Mirotsou M, Kirste I, Dzau VJ.

Circ Res. 2017 Apr 28;120(9):1403-1413. doi: 10.1161/CIRCRESAHA.116.308741. Epub 2017 Feb 16.

14.

Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.

Zhang Y, Zhong JF, Qiu H, MacLellan WR, Marbán E, Wang C.

Sci Rep. 2015 Dec 14;5:17686. doi: 10.1038/srep17686. Erratum in: Sci Rep. 2017 Oct 20;7:46907.

15.

Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence.

Aarts M, Georgilis A, Beniazza M, Beolchi P, Banito A, Carroll T, Kulisic M, Kaemena DF, Dharmalingam G, Martin N, Reik W, Zuber J, Kaji K, Chandra T, Gil J.

Genes Dev. 2017 Oct 15;31(20):2085-2098. doi: 10.1101/gad.297796.117. Epub 2017 Nov 14.

16.

Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?

Gerovska D, Araúzo-Bravo MJ.

Mol Hum Reprod. 2016 Mar;22(3):208-25. doi: 10.1093/molehr/gav072. Epub 2016 Jan 5.

PMID:
26740066
17.
18.

Generation of an inducible fibroblast cell line for studying direct cardiac reprogramming.

Vaseghi HR, Yin C, Zhou Y, Wang L, Liu J, Qian L.

Genesis. 2016 Jul;54(7):398-406. doi: 10.1002/dvg.22947. Epub 2016 Jun 1.

19.

Single cell transcriptomics of pluripotent stem cells: reprogramming and differentiation.

Natarajan KN, Teichmann SA, Kolodziejczyk AA.

Curr Opin Genet Dev. 2017 Oct;46:66-76. doi: 10.1016/j.gde.2017.06.003. Epub 2017 Jul 1. Review.

PMID:
28675884
20.

X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency.

Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R, Schmidt R, McKee R, Sado T, Tada T, Meissner A, Plath K.

Cell. 2014 Dec 18;159(7):1681-97. doi: 10.1016/j.cell.2014.11.040.

Supplemental Content

Support Center