Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor.

Luo JH, Wu M, Liu J, Qian G, Yuan Z, Guo J.

Environ Int. 2019 Jun 19;130:104926. doi: 10.1016/j.envint.2019.104926. [Epub ahead of print]

2.

Microbial Selenate Reduction Driven by a Denitrifying Anaerobic Methane Oxidation Biofilm.

Luo JH, Chen H, Hu S, Cai C, Yuan Z, Guo J.

Environ Sci Technol. 2018 Apr 3;52(7):4006-4012. doi: 10.1021/acs.est.7b05046. Epub 2018 Mar 20.

PMID:
29533610
3.

Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.

Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF, Lüke C, Jetten MSM.

Appl Microbiol Biotechnol. 2017 Sep;101(18):7075-7084. doi: 10.1007/s00253-017-8416-0. Epub 2017 Aug 4.

4.

Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor.

Dong QY, Wang Z, Shi LD, Lai CY, Zhao HP.

Environ Sci Pollut Res Int. 2019 Jul 8. doi: 10.1007/s11356-019-05709-7. [Epub ahead of print]

PMID:
31286367
5.

Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

Gambelli L, Guerrero-Cruz S, Mesman RJ, Cremers G, Jetten MSM, Op den Camp HJM, Kartal B, Lueke C, van Niftrik L.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02186-17. doi: 10.1128/AEM.02186-17. Print 2018 Feb 1.

6.

Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor.

Lu YZ, Fu L, Ding J, Ding ZW, Li N, Zeng RJ.

Water Res. 2016 Oct 1;102:445-452. doi: 10.1016/j.watres.2016.06.065. Epub 2016 Jul 1.

PMID:
27395029
7.

Nitrate effects on chromate reduction in a methane-based biofilm.

Zhong L, Lai CY, Shi LD, Wang KD, Dai YJ, Liu YW, Ma F, Rittmann BE, Zheng P, Zhao HP.

Water Res. 2017 May 15;115:130-137. doi: 10.1016/j.watres.2017.03.003. Epub 2017 Mar 2.

PMID:
28273443
8.

Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.

Chen R, Luo YH, Chen JX, Zhang Y, Wen LL, Shi LD, Tang Y, Rittmann BE, Zheng P, Zhao HP.

Environ Sci Pollut Res Int. 2016 May;23(10):9540-8. doi: 10.1007/s11356-016-6146-y. Epub 2016 Feb 3.

PMID:
26841777
9.

Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor.

Lai CY, Zhong L, Zhang Y, Chen JX, Wen LL, Shi LD, Sun YP, Ma F, Rittmann BE, Zhou C, Tang Y, Zheng P, Zhao HP.

Environ Sci Technol. 2016 Jun 7;50(11):5832-9. doi: 10.1021/acs.est.5b06177. Epub 2016 May 17.

PMID:
27161770
10.

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.

Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW.

Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28. Erratum in: Nature. 2013 Sep 26;501(7468):578.

PMID:
23892779
11.

The effect of electron competition on chromate reduction using methane as electron donor.

Lv PL, Zhong L, Dong QY, Yang SL, Shen WW, Zhu QS, Lai CY, Luo AC, Tang Y, Zhao HP.

Environ Sci Pollut Res Int. 2018 Mar;25(7):6609-6618. doi: 10.1007/s11356-017-0937-7. Epub 2017 Dec 19.

PMID:
29255986
12.

Microbial Chromate Reduction Coupled to Anaerobic Oxidation of Elemental Sulfur or Zerovalent Iron.

Shi J, Zhang B, Qiu R, Lai C, Jiang Y, He C, Guo J.

Environ Sci Technol. 2019 Mar 19;53(6):3198-3207. doi: 10.1021/acs.est.8b05053. Epub 2019 Feb 27.

PMID:
30776217
13.

Methane-supported nitrate removal from groundwater in a membrane biofilm reactor.

Luo JH, Chen H, Yuan Z, Guo J.

Water Res. 2018 Apr 1;132:71-78. doi: 10.1016/j.watres.2017.12.064. Epub 2017 Dec 27.

PMID:
29306701
14.

Anaerobic oxidation of methane: an "active" microbial process.

Cui M, Ma A, Qi H, Zhuang X, Zhuang G.

Microbiologyopen. 2015 Feb;4(1):1-11. doi: 10.1002/mbo3.232. Epub 2014 Dec 22. Review.

15.

A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.

Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, Tyson GW, Yuan Z, Hu S.

ISME J. 2018 Aug;12(8):1929-1939. doi: 10.1038/s41396-018-0109-x. Epub 2018 Apr 16.

PMID:
29662147
16.

Archaea catalyze iron-dependent anaerobic oxidation of methane.

Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B.

Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.

17.

Microbial selenite reduction coupled to anaerobic oxidation of methane.

Bai YN, Wang XN, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ.

Sci Total Environ. 2019 Jun 15;669:168-174. doi: 10.1016/j.scitotenv.2019.03.119. Epub 2019 Mar 9.

PMID:
30878925
18.

Response of the Anaerobic Methanotroph "Candidatus Methanoperedens nitroreducens" to Oxygen Stress.

Guerrero-Cruz S, Cremers G, van Alen TA, Op den Camp HJM, Jetten MSM, Rasigraf O, Vaksmaa A.

Appl Environ Microbiol. 2018 Nov 30;84(24). pii: e01832-18. doi: 10.1128/AEM.01832-18. Print 2018 Dec 15.

19.

Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate.

Cai C, Hu S, Guo J, Shi Y, Xie GJ, Yuan Z.

Water Res. 2015 Dec 15;87:211-7. doi: 10.1016/j.watres.2015.09.026. Epub 2015 Sep 16.

PMID:
26414889
20.

Nitrate- and nitrite-dependent anaerobic oxidation of methane.

Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J.

Environ Microbiol Rep. 2016 Dec;8(6):941-955. doi: 10.1111/1758-2229.12487. Epub 2016 Nov 9. Review.

PMID:
27753265

Supplemental Content

Support Center