Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

The Border Zone of Tumor. Where is the Border? What is a Surgical Border for Patients?

Yamaguchi F.

World Neurosurg X. 2019 Jan 24;2:100011. doi: 10.1016/j.wnsx.2019.100011. eCollection 2019 Apr. No abstract available.

2.

Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment.

Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, König R.

Neurosurg Focus. 2014 Feb;36(2):E3. doi: 10.3171/2013.11.FOCUS13463.

PMID:
24484256
3.

Combined Fluorescence Using 5-Aminolevulinic Acid and Fluorescein Sodium at Glioblastoma Border: Intraoperative Findings and Histopathologic Data About 3 Newly Diagnosed Consecutive Cases.

Della Puppa A, Munari M, Gardiman MP, Volpin F.

World Neurosurg. 2019 Feb;122:e856-e863. doi: 10.1016/j.wneu.2018.10.163. Epub 2018 Nov 2.

PMID:
30391771
4.

Combining 5-Aminolevulinic Acid Fluorescence and Intraoperative Magnetic Resonance Imaging in Glioblastoma Surgery: A Histology-Based Evaluation.

Hauser SB, Kockro RA, Actor B, Sarnthein J, Bernays RL.

Neurosurgery. 2016 Apr;78(4):475-83. doi: 10.1227/NEU.0000000000001035.

5.

A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas.

Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS.

J Neurosurg. 2016 May;124(5):1300-9. doi: 10.3171/2015.5.JNS1577. Epub 2015 Nov 6.

PMID:
26544781
6.

Systematic histopathological analysis of different 5-aminolevulinic acid-induced fluorescence levels in newly diagnosed glioblastomas.

Kiesel B, Mischkulnig M, Woehrer A, Martinez-Moreno M, Millesi M, Mallouhi A, Czech T, Preusser M, Hainfellner JA, Wolfsberger S, Knosp E, Widhalm G.

J Neurosurg. 2018 Aug;129(2):341-353. doi: 10.3171/2017.4.JNS162991. Epub 2017 Oct 27.

PMID:
29076783
7.

Less Invasive Phenotype Found in Isocitrate Dehydrogenase-mutated Glioblastomas than in Isocitrate Dehydrogenase Wild-Type Glioblastomas: A Diffusion-Tensor Imaging Study.

Price SJ, Allinson K, Liu H, Boonzaier NR, Yan JL, Lupson VC, Larkin TJ.

Radiology. 2017 Apr;283(1):215-221. doi: 10.1148/radiol.2016152679. Epub 2016 Nov 16.

PMID:
27849434
8.

Pathological analysis of the surgical margins of resected glioblastomas excised using photodynamic visualization with both 5-aminolevulinic acid and fluorescein sodium.

Yano H, Nakayama N, Ohe N, Miwa K, Shinoda J, Iwama T.

J Neurooncol. 2017 Jun;133(2):389-397. doi: 10.1007/s11060-017-2445-5. Epub 2017 Apr 21.

PMID:
28432590
9.

Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience.

Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J.

J Neurooncol. 2011 Mar;102(1):105-13. doi: 10.1007/s11060-010-0296-4. Epub 2010 Jul 6.

PMID:
20607351
10.

Clinical prognostic value of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in glioblastoma.

Mistry AM, Vnencak-Jones CL, Mobley BC.

J Neurooncol. 2018 Jun;138(2):307-313. doi: 10.1007/s11060-018-2796-6. Epub 2018 Feb 8.

PMID:
29423539
11.
12.

Histopathological Insights on Imaging Results of Intraoperative Magnetic Resonance Imaging, 5-Aminolevulinic Acid, and Intraoperative Ultrasound in Glioblastoma Surgery.

Coburger J, Scheuerle A, Pala A, Thal D, Wirtz CR, König R.

Neurosurgery. 2017 Jul 1;81(1):165-174. doi: 10.1093/neuros/nyw143.

PMID:
28204539
13.

Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence.

Idoate MA, Díez Valle R, Echeveste J, Tejada S.

Neuropathology. 2011 Dec;31(6):575-82. doi: 10.1111/j.1440-1789.2011.01202.x. Epub 2011 Mar 1.

PMID:
21355891
14.

The value of visible 5-ALA fluorescence and quantitative protoporphyrin IX analysis for improved surgery of suspected low-grade gliomas.

Widhalm G, Olson J, Weller J, Bravo J, Han SJ, Phillips J, Hervey-Jumper SL, Chang SM, Roberts DW, Berger MS.

J Neurosurg. 2019 May 10:1-10. doi: 10.3171/2019.1.JNS182614. [Epub ahead of print]

PMID:
31075771
15.

Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid.

Haj-Hosseini N, Richter J, Andersson-Engels S, Wårdell K.

Lasers Surg Med. 2010 Jan;42(1):9-14. doi: 10.1002/lsm.20868.

PMID:
20077492
16.

Isocitrate dehydrogenase mutations in defining the biology of and supporting clinical decision making in glioblastoma.

Kálovits F, Tompa M, Nagy Á, Kálmán B.

Ideggyogy Sz. 2018 Jul 30;71(7-08):237-247. doi: 10.18071/isz.71.0237. Review.

PMID:
30113792
17.

Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid).

Roberts DW, Valdés PA, Harris BT, Hartov A, Fan X, Ji S, Leblond F, Tosteson TD, Wilson BC, Paulsen KD.

Neurosurg Clin N Am. 2012 Jul;23(3):371-7. doi: 10.1016/j.nec.2012.04.001. Review.

18.

Low dose 5-aminolevulinic acid: Implications in spectroscopic measurements during brain tumor surgery.

Haj-Hosseini N, Richter JC, Hallbeck M, Wårdell K.

Photodiagnosis Photodyn Ther. 2015 Jun;12(2):209-14. doi: 10.1016/j.pdpdt.2015.03.004. Epub 2015 Mar 26.

PMID:
25818546
19.

Intraoperative assessment of isocitrate dehydrogenase mutation status in human gliomas using desorption electrospray ionization-mass spectrometry.

Alfaro CM, Pirro V, Keating MF, Hattab EM, Cooks RG, Cohen-Gadol AA.

J Neurosurg. 2019 Jan 4:1-8. doi: 10.3171/2018.8.JNS181207. [Epub ahead of print]

PMID:
30611146
20.

Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas.

Kim JE, Cho HR, Xu WJ, Kim JY, Kim SK, Kim SK, Park SH, Kim H, Lee SH, Choi SH, Park S, Park CK.

Oncotarget. 2015 Aug 21;6(24):20266-77.

Supplemental Content

Support Center