Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Re©B8- and Re©B9-: New Members of the Transition-Metal-Centered Borometallic Molecular Wheel Family.

Chen TT, Li WL, Bai H, Chen WJ, Dong XR, Li J, Wang LS.

J Phys Chem A. 2019 Jun 27;123(25):5317-5324. doi: 10.1021/acs.jpca.9b03942. Epub 2019 Jun 17.

PMID:
31204479
2.

Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds.

Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS.

Acc Chem Res. 2013 Feb 19;46(2):350-8. doi: 10.1021/ar300149a. Epub 2012 Dec 5.

PMID:
23210660
3.

Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

Sergeeva AP, Popov IA, Piazza ZA, Li WL, Romanescu C, Wang LS, Boldyrev AI.

Acc Chem Res. 2014 Apr 15;47(4):1349-58. doi: 10.1021/ar400310g. Epub 2014 Mar 24.

PMID:
24661097
4.

On the way to the highest coordination number in the planar metal-centred aromatic Ta©B10- cluster: evolution of the structures of TaB(n)- (n = 3-8).

Li WL, Ivanov AS, Federič J, Romanescu C, Černušák I, Boldyrev AI, Wang LS.

J Chem Phys. 2013 Sep 14;139(10):104312. doi: 10.1063/1.4820401.

PMID:
24050349
5.

Geometric and electronic factors in the rational design of transition-metal-centered boron molecular wheels.

Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS.

J Chem Phys. 2013 Apr 7;138(13):134315. doi: 10.1063/1.4798935.

PMID:
23574235
6.

Beyond organic chemistry: aromaticity in atomic clusters.

Boldyrev AI, Wang LS.

Phys Chem Chem Phys. 2016 Apr 28;18(17):11589-605. doi: 10.1039/c5cp07465g.

PMID:
26864511
7.

Geometrical requirements for transition-metal-centered aromatic boron wheels: the case of VB10(-).

Li WL, Romanescu C, Piazza ZA, Wang LS.

Phys Chem Chem Phys. 2012 Oct 21;14(39):13663-9.

PMID:
22968622
8.

Many M©B(n) boron wheels are local, but not global minima.

Liao Y, Cruz CL, Schleyer Pv, Chen Z.

Phys Chem Chem Phys. 2012 Nov 21;14(43):14898-904. doi: 10.1039/c2cp41521f. Epub 2012 Sep 13.

PMID:
22977885
9.

Double aromaticity in transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8).

Xu C, Cheng L, Yang J.

J Chem Phys. 2014 Sep 28;141(12):124301. doi: 10.1063/1.4895727.

PMID:
25273431
10.

Transition-metal-centered nine-membered boron rings: MⓒB9 and MⓒB9(-) (M = Rh, Ir).

Li WL, Romanescu C, Galeev TR, Piazza ZA, Boldyrev AI, Wang LS.

J Am Chem Soc. 2012 Jan 11;134(1):165-8. doi: 10.1021/ja209808k. Epub 2011 Dec 16.

PMID:
22148745
11.

A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.

De La Cruz C, Sheppard N.

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jan;78(1):7-28. doi: 10.1016/j.saa.2010.08.001. Epub 2010 Aug 17.

PMID:
21123107
12.

CO2 capture and separation from N2/CH4 mixtures by Co@B8/Co@B8(-) and M@B9/M@B9(-) (M = Ir, Rh, Ru) clusters: a theoretical study.

Wang W, Zhang X, Li P, Sun Q, Li Z, Ren C, Guo C.

J Phys Chem A. 2015 Jan 29;119(4):796-805. doi: 10.1021/jp511669w. Epub 2015 Jan 16.

PMID:
25594368
13.

Valence isoelectronic substitution in the B8(-) and B9(-) molecular wheels by an Al dopant atom: umbrella-like structures of AlB7(-) and AlB8(-).

Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI.

J Chem Phys. 2011 Sep 14;135(10):104301. doi: 10.1063/1.3625959.

PMID:
21932887
14.

Comprehensive analysis of chemical bonding in boron clusters.

Zubarev DY, Boldyrev AI.

J Comput Chem. 2007 Jan 15;28(1):251-68.

PMID:
17111395
15.

Density functional theoretical investigation on structure, optical response and hydrogen adsorption properties of B9/metal-B9 clusters.

Banerjee S, Periyasamy G, Pati SK.

Phys Chem Chem Phys. 2013 Jun 7;15(21):8303-10. doi: 10.1039/c3cp50881a. Epub 2013 Apr 24.

PMID:
23615876
16.

Viable aromatic BenHn stars enclosing a planar hypercoordinate boron or late transition metal.

Zhao XF, Li JJ, Li HR, Yuan C, Tian X, Li SD, Wu YB, Guo JC, Wang ZX.

Phys Chem Chem Phys. 2018 Mar 7;20(10):7217-7222. doi: 10.1039/c7cp06955c.

PMID:
29484332
17.

Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12(-) and RhB12(-).

Popov IA, Li WL, Piazza ZA, Boldyrev AI, Wang LS.

J Phys Chem A. 2014 Sep 18;118(37):8098-105. doi: 10.1021/jp411867q. Epub 2014 Jan 23.

PMID:
24428747
18.

Unconventional charge distribution in the planar wheel-type M©B6H6(-/0/+) (M = Mn, Fe and Co): central M with negative charges and peripheral boron ring with positive charges.

Hou J, Duan Q, Qin J, Shen X, Zhao J, Liang Q, Jiang D, Gao S.

Phys Chem Chem Phys. 2015 Apr 21;17(15):9644-50. doi: 10.1039/c5cp00254k.

PMID:
25830384
19.

Photoelectron spectroscopy and ab initio study of boron-carbon mixed clusters: CB9- and C2B8-.

Galeev TR, Li WL, Romanescu C, Cernusák I, Wang LS, Boldyrev AI.

J Chem Phys. 2012 Dec 21;137(23):234306. doi: 10.1063/1.4770231.

PMID:
23267485
20.

Binuclear cyclopentadienylmetal cyclooctatetraene derivatives of the first row transition metals: effects of ring conformation on the bonding of an eight-membered carbocyclic ring to a pair of metal atoms.

Zhai X, Li G, Li QS, Xie Y, King RB, Schaefer HF.

J Phys Chem A. 2011 Apr 14;115(14):3133-43. doi: 10.1021/jp112077j. Epub 2011 Mar 22.

PMID:
21438631

Supplemental Content

Support Center