Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96


A Weighted Ensemble Model for Prediction of Infectious Diseases.

Shashvat K, Basu R, Bhondekar A, Kaur A.

Curr Pharm Biotechnol. 2019 Jun 12. doi: 10.2174/1389201020666190612160631. [Epub ahead of print]


Regression analysis for detecting epileptic seizure with different feature extracting strategies.

Hussain L, Saeed S, Idris A, Awan IA, Shah SA, Majid A, Ahmed B, Chaudhary QA.

Biomed Tech (Berl). 2019 May 30. pii: /j/bmte.ahead-of-print/bmt-2018-0012/bmt-2018-0012.xml. doi: 10.1515/bmt-2018-0012. [Epub ahead of print] Review.


Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model.

Azeez A, Obaromi D, Odeyemi A, Ndege J, Muntabayi R.

Int J Environ Res Public Health. 2016 Jul 26;13(8). pii: E757. doi: 10.3390/ijerph13080757.


To Generate an Ensemble Model for Women Thyroid Prediction Using Data Mining Techniques

Yadav DC, Pal S.

Asian Pac J Cancer Prev. 2019 Apr 29;20(4):1275-1281.


A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.

Zhang X, Zhang Q, Zhang G, Nie Z, Gui Z, Que H.

Int J Environ Res Public Health. 2018 May 21;15(5). pii: E1032. doi: 10.3390/ijerph15051032.


Monthly ENSO Forecast Skill and Lagged Ensemble Size.

Trenary L, DelSole T, Tippett MK, Pegion K.

J Adv Model Earth Syst. 2018 Apr;10(4):1074-1086. doi: 10.1002/2017MS001204. Epub 2018 Apr 20.


Wastewater treatment plant performance analysis using artificial intelligence - an ensemble approach.

Nourani V, Elkiran G, Abba SI.

Water Sci Technol. 2018 Dec;78(10):2064-2076. doi: 10.2166/wst.2018.477.


Developing a dengue forecast model using machine learning: A case study in China.

Guo P, Liu T, Zhang Q, Wang L, Xiao J, Zhang Q, Luo G, Li Z, He J, Zhang Y, Ma W.

PLoS Negl Trop Dis. 2017 Oct 16;11(10):e0005973. doi: 10.1371/journal.pntd.0005973. eCollection 2017 Oct.


An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

Ranganayaki V, Deepa SN.

ScientificWorldJournal. 2016;2016:9293529. doi: 10.1155/2016/9293529. Epub 2016 Mar 1.


Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas.

Kesorn K, Ongruk P, Chompoosri J, Phumee A, Thavara U, Tawatsin A, Siriyasatien P.

PLoS One. 2015 May 11;10(5):e0125049. doi: 10.1371/journal.pone.0125049. eCollection 2015.


Comparative study of four time series methods in forecasting typhoid fever incidence in China.

Zhang X, Liu Y, Yang M, Zhang T, Young AA, Li X.

PLoS One. 2013 May 1;8(5):e63116. doi: 10.1371/journal.pone.0063116. Print 2013.


Minimalist ensemble algorithms for genome-wide protein localization prediction.

Lin JR, Mondal AM, Liu R, Hu J.

BMC Bioinformatics. 2012 Jul 3;13:157. doi: 10.1186/1471-2105-13-157.


A hybrid seasonal prediction model for tuberculosis incidence in China.

Cao S, Wang F, Tam W, Tse LA, Kim JH, Liu J, Lu Z.

BMC Med Inform Decis Mak. 2013 May 2;13:56. doi: 10.1186/1472-6947-13-56.


Sequence-based bacterial small RNAs prediction using ensemble learning strategies.

Tang G, Shi J, Wu W, Yue X, Zhang W.

BMC Bioinformatics. 2018 Dec 21;19(Suppl 20):503. doi: 10.1186/s12859-018-2535-1.


Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.

Teo TP, Ahmed SB, Kawalec P, Alayoubi N, Bruce N, Lyn E, Pistorius S.

Med Phys. 2018 Feb;45(2):830-845. doi: 10.1002/mp.12731. Epub 2018 Jan 12.


Time series model for forecasting the number of new admission inpatients.

Zhou L, Zhao P, Wu D, Cheng C, Huang H.

BMC Med Inform Decis Mak. 2018 Jun 15;18(1):39. doi: 10.1186/s12911-018-0616-8.


Prediction of infectious disease epidemics via weighted density ensembles.

Ray EL, Reich NG.

PLoS Comput Biol. 2018 Feb 20;14(2):e1005910. doi: 10.1371/journal.pcbi.1005910. eCollection 2018 Feb.


An ensemble model with cluster assumption for warfarin dose prediction in Chinese patients.

Tao Y, Chen YJ, Xue L, Xie C, Jiang B, Zhang Y.

IEEE J Biomed Health Inform. 2019 Jan 7. doi: 10.1109/JBHI.2019.2891164. [Epub ahead of print]


Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices.

Tetko IV, Tanchuk VY, Villa AE.

J Chem Inf Comput Sci. 2001 Sep-Oct;41(5):1407-21.


A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

Kilian R, Matschinger H, Löeffler W, Roick C, Angermeyer MC.

J Ment Health Policy Econ. 2002 Mar;5(1):21-31.


Supplemental Content

Support Center