Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

PTPN3 acts as a tumor suppressor and boosts TGF-β signaling independent of its phosphatase activity.

Yuan B, Liu J, Cao J, Yu Y, Zhang H, Wang F, Zhu Y, Xiao M, Liu S, Ye Y, Ma L, Xu D, Xu N, Li Y, Zhao B, Xu P, Jin J, Xu J, Chen X, Shen L, Lin X, Feng XH.

EMBO J. 2019 Jun 14. pii: e99945. doi: 10.15252/embj.201899945. [Epub ahead of print]

PMID:
31201214
2.

Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.

Gao Q, Zhao YJ, Wang XY, Guo WJ, Gao S, Wei L, Shi JY, Shi GM, Wang ZC, Zhang YN, Shi YH, Ding J, Ding ZB, Ke AW, Dai Z, Wu FZ, Wang H, Qiu ZP, Chen ZA, Zhang ZF, Qiu SJ, Zhou J, He XH, Fan J.

Gastroenterology. 2014 May;146(5):1397-407. doi: 10.1053/j.gastro.2014.01.062. Epub 2014 Feb 4.

PMID:
24503127
3.

Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3.

Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP.

J Biomed Sci. 2007 Nov;14(6):731-44. Epub 2007 Jun 24.

PMID:
17588219
4.

Arkadia-Smad7-mediated positive regulation of TGF-beta signaling in a rat model of tubulointerstitial fibrosis.

Liu FY, Li XZ, Peng YM, Liu H, Liu YH.

Am J Nephrol. 2007;27(2):176-83. Epub 2007 Mar 7.

PMID:
17347560
5.

Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization.

Hwangbo C, Tae N, Lee S, Kim O, Park OK, Kim J, Kwon SH, Lee JH.

Oncogene. 2016 Jan 21;35(3):389-401. doi: 10.1038/onc.2015.100. Epub 2015 Apr 20.

PMID:
25893292
6.

Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition.

Peng SB, Yan L, Xia X, Watkins SA, Brooks HB, Beight D, Herron DK, Jones ML, Lampe JW, McMillen WT, Mort N, Sawyer JS, Yingling JM.

Biochemistry. 2005 Feb 22;44(7):2293-304.

PMID:
15709742
7.

Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein.

Genera M, Samson D, Raynal B, Haouz A, Baron B, Simenel C, Guerois R, Wolff N, Caillet-Saguy C.

Sci Rep. 2019 May 15;9(1):7438. doi: 10.1038/s41598-019-43932-x.

8.

Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase.

Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD.

J Immunol. 2007 Mar 15;178(6):3680-7.

9.

Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation.

Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC.

Oncogene. 2015 Jul;34(29):3791-803. doi: 10.1038/onc.2014.312. Epub 2014 Sep 29.

PMID:
25263444
10.

PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma.

Wu CW, Chen JH, Kao HL, Li AF, Lai CH, Chi CW, Lin WC.

Anticancer Res. 2006 Mar-Apr;26(2B):1643-9.

11.

p21-Activated kinase 2 (PAK2) inhibits TGF-β signaling in Madin-Darby canine kidney (MDCK) epithelial cells by interfering with the receptor-Smad interaction.

Yan X, Zhang J, Sun Q, Tuazon PT, Wu X, Traugh JA, Chen YG.

J Biol Chem. 2012 Apr 20;287(17):13705-12. doi: 10.1074/jbc.M112.346221. Epub 2012 Mar 5.

12.

Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins.

Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB.

J Virol. 2007 Mar;81(5):2231-9. Epub 2006 Dec 13.

13.

SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.

Liu S, Nheu T, Luwor R, Nicholson SE, Zhu HJ.

J Biol Chem. 2015 Jul 17;290(29):17894-908. doi: 10.1074/jbc.M114.607184. Epub 2015 Jun 1.

14.

TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis.

Zhang L, Zhou F, García de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A, Sheppard KA, Mickanin C, Kuppen PJ, Lu CX, Ten Dijke P.

Mol Cell. 2013 Sep 12;51(5):559-72. doi: 10.1016/j.molcel.2013.07.014. Epub 2013 Aug 22.

15.

CD109-mediated degradation of TGF-β receptors and inhibition of TGF-β responses involve regulation of SMAD7 and Smurf2 localization and function.

Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A.

J Cell Biochem. 2012 Jan;113(1):238-46. doi: 10.1002/jcb.23349.

PMID:
21898545
16.

Effects of Arkadia on airway remodeling through enhancing TGF-beta signaling in allergic rats.

Li XZ, Feng JT, Hu CP, Chen ZQ, Gu QH, Nie HP.

Lab Invest. 2010 Jul;90(7):997-1003. doi: 10.1038/labinvest.2010.78. Epub 2010 Apr 12.

17.

RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI.

Zhang J, Ma W, Tian S, Fan Z, Ma X, Yang X, Zhao Q, Tan K, Chen H, Chen D, Huang BR.

Cell Signal. 2014 Jan;26(1):162-72. doi: 10.1016/j.cellsig.2013.09.019. Epub 2013 Oct 6.

PMID:
24103590
18.

Downregulation of SnoN oncoprotein induced by antibiotics anisomycin and puromycin positively regulates transforming growth factor-β signals.

Hernández-Damián J, Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Vázquez-Macías A, Caligaris C, Sosa-Garrocho M, Flores-Pérez B, Romero-Avila M, Macías-Silva M.

Biochim Biophys Acta. 2013 Nov;1830(11):5049-58. doi: 10.1016/j.bbagen.2013.07.006. Epub 2013 Jul 18.

PMID:
23872350
19.

Downregulation of Smurf2 ubiquitin ligase in pancreatic cancer cells reversed TGF-β-induced tumor formation.

Wu B, Guo B, Kang J, Deng X, Fan Y, Zhang X, Ai K.

Tumour Biol. 2016 Oct 11. [Epub ahead of print]

PMID:
27730540
20.

Homeoprotein Six1 increases TGF-beta type I receptor and converts TGF-beta signaling from suppressive to supportive for tumor growth.

Micalizzi DS, Wang CA, Farabaugh SM, Schiemann WP, Ford HL.

Cancer Res. 2010 Dec 15;70(24):10371-80. doi: 10.1158/0008-5472.CAN-10-1354. Epub 2010 Nov 5.

Supplemental Content

Support Center