Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Patient-specific Computational Hemodynamic Analysis for Interrupted Aortic Arch in an Adult: Implications for Aortic Dissection Initiation.

Peng L, Qiu Y, Yang Z, Yuan D, Dai C, Li D, Jiang Y, Zheng T.

Sci Rep. 2019 Jun 13;9(1):8600. doi: 10.1038/s41598-019-45097-z.

2.

Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis.

LaDisa JF Jr, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA.

Congenit Heart Dis. 2011 Sep-Oct;6(5):432-43. doi: 10.1111/j.1747-0803.2011.00553.x. Epub 2011 Jul 31.

3.

Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection.

Chi Q, He Y, Luan Y, Qin K, Mu L.

Comput Biol Med. 2017 Oct 1;89:236-247. doi: 10.1016/j.compbiomed.2017.07.029. Epub 2017 Aug 1.

PMID:
28843154
4.

Blood flow analysis of the aortic arch using computational fluid dynamics.

Numata S, Itatani K, Kanda K, Doi K, Yamazaki S, Morimoto K, Manabe K, Ikemoto K, Yaku H.

Eur J Cardiothorac Surg. 2016 Jun;49(6):1578-85. doi: 10.1093/ejcts/ezv459. Epub 2016 Jan 20.

PMID:
26792932
5.

Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta.

Karmonik C, Müller-Eschner M, Partovi S, Geisbüsch P, Ganten MK, Bismuth J, Davies MG, Böckler D, Loebe M, Lumsden AB, von Tengg-Kobligk H.

Vasc Endovascular Surg. 2013 Nov;47(8):625-31. doi: 10.1177/1538574413503561. Epub 2013 Sep 17.

PMID:
24048257
6.

Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.

Tse KM, Chiu P, Lee HP, Ho P.

J Biomech. 2011 Mar 15;44(5):827-36. doi: 10.1016/j.jbiomech.2010.12.014. Epub 2011 Jan 21.

PMID:
21256491
7.

Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.

Cheng Z, Riga C, Chan J, Hamady M, Wood NB, Cheshire NJ, Xu Y, Gibbs RG.

J Vasc Surg. 2013 Feb;57(2 Suppl):35S-43S. doi: 10.1016/j.jvs.2012.07.061.

8.

[Application of computational fluid dynamics in hemodynamic research of aortic arch].

Zhang T, Xiong J, Hu XZ, Jia X, Luan SL, Guo W.

Zhonghua Yi Xue Za Zhi. 2013 Jan 29;93(5):380-4. Chinese.

PMID:
23660214
9.

The risk of stanford type-A aortic dissection with different tear size and location: a numerical study.

Shi Y, Zhu M, Chang Y, Qiao H, Liu Y.

Biomed Eng Online. 2016 Dec 28;15(Suppl 2):128. doi: 10.1186/s12938-016-0258-y.

10.

Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study.

Osswald A, Karmonik C, Anderson JR, Rengier F, Karck M, Engelke J, Kallenbach K, Kotelis D, Partovi S, Böckler D, Ruhparwar A.

Eur J Vasc Endovasc Surg. 2017 Sep;54(3):324-330. doi: 10.1016/j.ejvs.2017.06.012. Epub 2017 Jul 14.

11.

Multi-modality image-based computational analysis of haemodynamics in aortic dissection.

Dillon-Murphy D, Noorani A, Nordsletten D, Figueroa CA.

Biomech Model Mechanobiol. 2016 Aug;15(4):857-76. doi: 10.1007/s10237-015-0729-2. Epub 2015 Sep 28.

12.

Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.

Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T.

Cerebrovasc Dis. 2012;34(2):121-9. doi: 10.1159/000339678. Epub 2012 Aug 1.

PMID:
22965244
13.

Aortic hemodynamics after thoracic endovascular aortic repair, with particular attention to the bird-beak configuration.

van Bogerijen GH, Auricchio F, Conti M, Lefieux A, Reali A, Veneziani A, Tolenaar JL, Moll FL, Rampoldi V, Trimarchi S.

J Endovasc Ther. 2014 Dec;21(6):791-802. doi: 10.1583/14-4778MR.1.

PMID:
25453880
14.

Subject-specific aortic wall shear stress estimations using semi-automatic segmentation.

Renner J, Nadali Najafabadi H, Modin D, Länne T, Karlsson M.

Clin Physiol Funct Imaging. 2012 Nov;32(6):481-91. doi: 10.1111/j.1475-097X.2012.01146.x. Epub 2012 Jun 27.

PMID:
23031070
15.

Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".

Hewlin RL Jr, Kizito JP.

Cardiovasc Eng Technol. 2018 Mar;9(1):1-31. doi: 10.1007/s13239-017-0332-z. Epub 2017 Nov 9.

PMID:
29124548
16.

Computational study on hemodynamic changes in patient-specific proximal neck angulation of abdominal aortic aneurysm with time-varying velocity.

Algabri YA, Rookkapan S, Gramigna V, Espino DM, Chatpun S.

Australas Phys Eng Sci Med. 2019 Mar;42(1):181-190. doi: 10.1007/s13246-019-00728-7. Epub 2019 Feb 14. Erratum in: Australas Phys Eng Sci Med. 2019 Mar 5;:.

PMID:
30762222
17.

Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.

Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Undar A.

J Biomech Eng. 2008 Dec;130(6):061012. doi: 10.1115/1.2978988.

PMID:
19045541
18.

Approaches for treatment of aortic arch aneurysm, a numerical study.

Nardi A, Avrahami I.

J Biomech. 2017 Jan 4;50:158-165. doi: 10.1016/j.jbiomech.2016.11.038. Epub 2016 Nov 12.

PMID:
27876371
19.

The study on hemodynamic effect of series type LVAD on aortic blood flow pattern: a primary numerical study.

Zhang Q, Gao B, Chang Y.

Biomed Eng Online. 2016 Dec 28;15(Suppl 2):163. doi: 10.1186/s12938-016-0252-4.

20.

Quantification of local hemodynamic alterations caused by virtual implantation of three commercially available stents for the treatment of aortic coarctation.

Kwon S, Feinstein JA, Dholakia RJ, Ladisa JF Jr.

Pediatr Cardiol. 2014 Apr;35(4):732-40. doi: 10.1007/s00246-013-0845-7. Epub 2013 Nov 21.

Supplemental Content

Support Center