Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma.

Yang Z, Qin L, Yang D, Hu Q, Jin J.

Bioorg Med Chem Lett. 2019 Jun 5. pii: S0960-894X(19)30372-5. doi: 10.1016/j.bmcl.2019.06.005. [Epub ahead of print]

PMID:
31196713
2.

An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma.

Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, Jiang C, Dai Y, Guo X, Xiang J, Li G.

BMC Med Genomics. 2012 Jan 19;5:3. doi: 10.1186/1755-8794-5-3.

3.

Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples.

Ou X, Zhan S, Sun C, Cheng Y, Wang X, Liu B, Zhai T, Lou X, Xia F.

Biosens Bioelectron. 2019 Jan 15;124-125:199-204. doi: 10.1016/j.bios.2018.10.009. Epub 2018 Oct 17.

PMID:
30388562
4.
5.

Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor.

Khoothiam K, Treerattrakoon K, Iempridee T, Luksirikul P, Dharakul T, Japrung D.

Analyst. 2019 Jul 8;144(14):4180-4187. doi: 10.1039/c9an00517j.

PMID:
31123738
6.

Plasma microRNA expression signature involving miR-548q, miR-630 and miR-940 as biomarkers for nasopharyngeal carcinoma detection.

Zhuo X, Zhou W, Li D, Chang A, Wang Y, Wu Y, Zhou Q.

Cancer Biomark. 2018;23(4):579-587. doi: 10.3233/CBM-181852.

PMID:
30475754
7.

Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma.

Liu X, Luo HN, Tian WD, Lu J, Li G, Wang L, Zhang B, Liang BJ, Peng XH, Lin SX, Peng Y, Li XP.

Cancer Biol Ther. 2013 Dec;14(12):1133-42. doi: 10.4161/cbt.26170. Epub 2013 Aug 23.

8.

Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.

Li W, Hou T, Wu M, Li F.

Talanta. 2016;148:116-21. doi: 10.1016/j.talanta.2015.10.078. Epub 2015 Oct 27.

PMID:
26653431
9.

Predictive value of miR-9 as a potential biomarker for nasopharyngeal carcinoma metastasis.

Lu J, Xu X, Liu X, Peng Y, Zhang B, Wang L, Luo H, Peng X, Li G, Tian W, He M, Li X.

Br J Cancer. 2014 Jan 21;110(2):392-8. doi: 10.1038/bjc.2013.751. Epub 2013 Dec 10.

10.

Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma.

Zeng X, Xiang J, Wu M, Xiong W, Tang H, Deng M, Li X, Liao Q, Su B, Luo Z, Zhou Y, Zhou M, Zeng Z, Li X, Shen S, Shuai C, Li G, Fang J, Peng S.

PLoS One. 2012;7(10):e46367. doi: 10.1371/journal.pone.0046367. Epub 2012 Oct 8.

11.

Plasma microRNA profiling in nasopharyngeal carcinoma patients reveals miR-548q and miR-483-5p as potential biomarkers.

Zheng XH, Cui C, Ruan HL, Xue WQ, Zhang SD, Hu YZ, Zhou XX, Jia WH.

Chin J Cancer. 2014 Jul;33(7):330-8. doi: 10.5732/cjc.013.10246. Epub 2014 May 26.

12.

Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection.

Tu Y, Li W, Wu P, Zhang H, Cai C.

Anal Chem. 2013 Feb 19;85(4):2536-42. doi: 10.1021/ac303772m. Epub 2013 Jan 28.

PMID:
23320509
13.

Epstein-Barr virus mir-bart1-5p detection via nasopharyngeal brush sampling is effective for diagnosing nasopharyngeal carcinoma.

Zheng XH, Lu LX, Cui C, Chen MY, Li XZ, Jia WH.

Oncotarget. 2016 Jan 26;7(4):4972-80. doi: 10.18632/oncotarget.6649.

14.

Profiling miRNAs in nasopharyngeal carcinoma FFPE tissue by microarray and Next Generation Sequencing.

Peng J, Feng Y, Rinaldi G, Levine P, Easley S, Martinez E, Hashmi S, Sadeghi N, Brindley PJ, Mulvenna JP, Bethony JM, Plieskatt JL.

Genom Data. 2014 Aug 27;2:285-9. doi: 10.1016/j.gdata.2014.08.005. eCollection 2014 Dec.

15.

Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues.

Wan XX, Yi H, Qu JQ, He QY, Xiao ZQ.

Oncol Rep. 2015 Nov;34(5):2585-601. doi: 10.3892/or.2015.4237. Epub 2015 Sep 1.

PMID:
26330189
16.

Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing.

Wang F, Lu J, Peng X, Wang J, Liu X, Chen X, Jiang Y, Li X, Zhang B.

J Exp Clin Cancer Res. 2016 Jan 22;35:17. doi: 10.1186/s13046-016-0292-4.

17.

A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection.

Xu J, Shi M, Huang H, Hu K, Chen W, Huang Y, Zhao S.

Analyst. 2018 Aug 6;143(16):3918-3925. doi: 10.1039/c8an01032c.

PMID:
30043777
18.
19.

MicroRNA profiling study reveals miR-150 in association with metastasis in nasopharyngeal carcinoma.

Yue PY, Ha WY, Lau CC, Cheung FM, Lee AW, Ng WT, Ngan RK, Yau CC, Kwong DL, Lung HL, Mak NK, Lung ML, Wong RN.

Sci Rep. 2017 Sep 20;7(1):12012. doi: 10.1038/s41598-017-10695-2.

20.

A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells.

Pan W, Liu B, Gao X, Yu Z, Liu X, Li N, Tang B.

Nanoscale. 2018 Aug 7;10(29):14264-14271. doi: 10.1039/c8nr04106g. Epub 2018 Jul 16.

PMID:
30010689

Supplemental Content

Support Center